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Abstract
Using subdivision as a basic primitive for the construction of arbi-
trary topology, smooth, free-form surfaces is attractive for content
destined for display on devices with greatly varying rendering per-
formance. Subdivision naturally supports level of detail rendering
and powerful compression algorithms. While the underlying algo-
rithms are conceptually simple it is difficult to implement player
engines which achieve optimal performance on modern CPUs such
as the Intel Pentium family.

In this paper we describe a novel table driven evaluation strategy
for subdivision surfaces using as an example the scheme of Cat-
mull and Clark. Cache conscious design and exploitation of SIMD
instructions allows us to achieve nearly 100% FPU utilization in the
inner loop and achieve a composite performance of 1.2 flop/cycle
on the Intel PIII and 1.8 flop/cycle on the Intel P4 including all
memory transfers. The algorithm supports tradeoffs between cache
size and memory bus usage which we examine. A library which
implements this engine is freely available from the authors.

1 Introduction
Subdivision surfaces have proven to be a useful modelling tool
and are now part of all standard modelling packages (e.g., 3DMax,
Maya, Softimage, Mirai, Lightwave, etc.). However, their use in re-
altime applications such as games has been lagging because previ-
ous algorithms for their evaluation were too computationally inten-
sive to run complex models at high frame rates with only moderate
resources.

Subdivision engines are generally implemented the same way
the corresponding subdivision scheme is defined,i.e., as a recursive
process that inserts new vertices into the mesh, refines existing point
positions, and updates the connectivity [19] (see Figure1). The as-
sociated data structures are often based on quadtrees for maximum
flexibility when performing adaptive evaluation and involve many
pointer indirections. Codes built on this basis do not perform as
well as one might hope based on a simple flop count. Careful pro-
filing reveals that the CPU is typically not fully utilized because it
is often waiting for data to be transferred from memory due to the
repeated pointer indirections.

Our approach was designed with the goal of eliminating mem-
ory latency delays and taking advantage of the CPU cache. Fur-
thermore, the data is organized to take full advantage of Single-
Instruction, Multiple-Data (SIMD) instructions [7]. As a result, our
optimized engine achieves approximately 1.2 flops/cycle on a PIII
and 1.8 flops/cycle on the P4.
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Figure 1:A control mesh for a phone, its first subdivided level and
the shaded limit surface.

Previous work There are in essence four different approaches
to the evaluation and rendering of subdivision surfaces: (I) recur-
sive evaluation; (II) direct evaluation; (III) reduction to the regular
setting; and (IV) pre-tabulated basis function composition.

Recursive evaluation based on repeated application of subdi-
vision stencils is the most direct implementation of the standard
definition of subdivision [19]. Zorin et al. [20] used traditional
quadtrees [15] with breadth first evaluation. This setup is the most
flexible. It easily supports adaptive rendering and multiresolution
surfaces, but requires significant effort to achieve good performance
because of the many pointer indirections. Neighbor finding in par-
ticular is expensive and hard to optimize [9]. Some of these issues
can be reduced through the use of statically sized arrays at each
level of the quadtree [6]. Recursive evaluation can also be imple-
mented in a depth first fashion [13], which tends to have a much
smaller memory footprint, making it attractive as a basis for hard-
ware implementation [14].

Instead of evaluating the surface recursively one may also evalu-
ate it directly at arbitrary parameter values. Such a strategy was first
demonstrated by Stam [16] and more recently extended to piece-
wise smooth subdivision surfaces [18]. These evaluators are suit-
able for very general surface tessellation techniques and are em-
ployed in the Maya modelling package. While they have the small-
est memory footprint, their performance on modern CPUs is un-
clear since their memory traffic has not been analyzed yet.

Subdivision schemes which are derived from splines can be eval-
uated by repeatedly splitting off regular sections of the surface and
evaluating these with standard polynomial evaluators. The most
efficient method for this purpose is based on forward differenc-
ing [11]. Pixar’s Renderman uses this approach in software [5]
for Catmull-Clark [4] surfaces, while Bischoffet al. [2] proposed



a hardware solution for Loop [12] surface rendering. While for-
ward differencing is asymptotically the most efficient approach, re-
cursive subdivision is required around irregular vertices with sig-
nificant setup costs for each regular patch which is split off. For-
ward differencing also requires very careful implementation since
it is numerically unstable. The fourth approach, pre-tabulated basis
function composition, is explored in this paper.

Contributions Most of the previous work either proposed hard-
ware solutions or was primarily concerned with high level optimiza-
tions such as adaptive tessellation, view dependent rendering, or
breadth first versus depth first evaluation. In contrast we focus on
achieving maximum performance on standard graphics hardware
together with a modern, general purpose CPU,e.g., the Intel Pen-
tium family. On such processors the key to high performance is
careful attention to caching issues: memory references are quite
expensive, while on-chip computation is relatively cheap. To op-
timally exploit this setup our method tessellatesbasis functionsin
an offline process using the state-of-the-art extended Catmull-Clark
subdivision rules of Biermannet al. [1]. The given subdivision
limit surface—together with associated limit tangents and texture
coordinates—is then evaluated at runtime as a linear combination
of these tabulated basis functions, each weighted by the appropriate
control point in the input control mesh1. We analyze the issues in-
volved in implementing this robustly while minimizing the number
of unique basis functions which need to be tabulated. The resulting
tables fit well into cache and the remaining computations execute
very efficiently. The algorithm is broadly applicable and we provide
a reference implementation available fordownload.

2 Approach
Before describing our algorithm in detail we fix some notation and
give the mathematical basis for our approach. While we focus on
Catmull-Clark subdivision in this paper the same ideas carry over
with little change to all other subdivision methods, be they based
on triangles or quadrilaterals, approximating or interpolating.

2.1 Catmull-Clark Subdivision
The input to the subdivision algorithm is acontrol mesh, which
must be a topological 2-manifold possibly with boundary (for non-
manifold subdivision see [17]). This mesh may consist of faces
with arbitrarydegree(number of bounding edges) and vertices with
arbitraryvalence(number of incident faces). For simplicity we as-
sume that all faces of the mesh are quads. If this is not the case,
one step of standard Catmull-Clark subdivision converts an arbi-
trary polygon mesh into one consisting of only quads. To allow
for creases and corners, edges respectively vertices can be tagged.
Corners, which are interpolating, may be convex or concave, the
two cases requiring different rules.

A vertex with one incident crease edge is a “dart” vertex. A
vertex with two incident creases may be either a smooth crease or
a corner. A vertex with more than 2 incident creases must be a
corner. At a corner, the creases partition the neighborhood of the
tagged vertex into sectors which can each be tagged as convex or
concave. A sector is not influenced by the topology or tags of an-
other sector, so when discussing a corner vertex one only considers
the two creases which bound the sector. Similarly, for crease ver-
tices we may separate the two sides of the crease and treat them
independently.

Subdivision proceeds by quadrisecting each face and assigning
point positions to each vertex in the finer mesh. These positions are
averages of the point positions in the coarser mesh and given in the
form of stencils(see Figure2). For more details on the rules and

1A related approach was recently proposed in independent work by
Brickhill [ 3] for Loop subdivision, however details of the implementation
remain sketchy and no performance analysis is provided.

the reasoning behind the weights we refer the reader to the original
paper by Biermannet al. [1]. Notice that all newly created ver-
tices have valence four,i.e., they areregular. Consequently, after
one subdivision step all original vertices are separated by regular
vertices and each face has at most oneirregular vertex, i.e., with
valence other than four. We take advantage of this in our imple-
mentation to limit the number of cases we need to consider (see
Section3). The limit of repeated subdivision yields the subdivision
surface (Figure1).
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Figure 2:Stencils for standard Catmull-Clark rules and the Bier-
mannet al.rules near an irregular crease vertex (circled).

2.2 Limit Surface Tessellation
Typically only a finite number of subdivision steps is performed
and followed by application of thelimit stencils. These are similar
to the regular subdivision stencils but carry weights that move the
points in one final averaging step to the limit surface. For details
on limit stencils as well as limit surface tangent stencils see [1].
Often a small number of subdivision steps is sufficient for all but
the most contorted models. For example, one level of subdivision
to separate all irregular vertices followed by five levels of additional
subdivision produces(26)2 = 4096 quads per original face. The
section of the limit surface corresponding to one face in the control
mesh constitutes apatch.

Because the subdivision rules take only immediate neighbors
into account and depend only on the local structure of the mesh,
each original control point influences a finite section of the limit
surface in its vicinity. In particular, for the rules of Biermannet
al. (assumings = 1 for all concave corners; see Section3), the
control setof a patch are all those vertices which belong to the set
of faces sharing an edge or vertex with the associated control mesh
face (see Figures3 and5). This implies that each patch can be pro-
duced independent of all other patches if the1-ring of neighbors of
the associated control mesh face is collected up and passed to the
appropriate evaluation routine.

2.3 Basis Functions
Because of the linearity of the subdivision process the final surface
can be understood as a linear combination of basis functions with

http://multires.caltech.edu/software/fastsubd/
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Figure 3:Example of an interior irregular vertex of valence five
with one of its incident first-level faces highlighted. The basis func-
tions whose support overlaps the selected face are shown as black
dots on the left. Due to rotational symmetry only one set of basis
functions is needed for all faces incident to the irregular vertex. On
the right the control set is further broken into those basis functions
in the 1-ring of the irregular vertex (black dots) and the outer seven
bases (white dots). Modulo symmetries there are only two distinct
types among the latter (as indicated by the labels “1” and “2”).

the original control points as weights

s(u, v) =
∑

iB
i(u, v)pi.

Herepi are the control points, typically carrying(x, y, z) positions
in world space, although they often also carry texture coordinates,
colors, etc. TheBi are the basis functions, one centered at each ver-
tex. The basis functions are defined as the result of subdividing a
unit pulse. For example, construct a control mesh in thex/z-plane
and move one control point toy = 1 to produce the associated
basis function (see Figure4). The final surface is thus a linear com-
bination of such basis functions each weighted by the actual control
point in the control mesh. The typical support of such a basis func-
tion is a 2-ring around the associated vertex.

The domain for the parameters(u, v) is the original control
mesh, each quad face parameterizing its associated limit patch for
(u, v) ∈ [0, 1]2. The limit patch tessellations produce samples of
the limit surfaces naturally associated with dyadic points in the do-
main. For example, afterd levels of subdivision the limit points
of the tessellation correspond to parameter values(un, vm) =
(n2−d, m2−d), n, m = 0, . . . , 2d − 1.

The critical observation for our algorithm is that theBi depend
only on the connectivity of the mesh and the presence of tags, but
not on the actual control points. The latter only enter at runtime.
Given some parameter values(un, vm) associated with a particular
patch the sample of the surface is found as

s(un, vm) =
∑

iB
i(un, vm)pi.

The sum can be further restricted to only those vertices whose basis
functions make a non-zero contribution over the selected patch,i.e.,
the 1-ring of the associated control mesh face.

2.4 Algorithm Overview
The basic idea is to evaluate each limit patch uniformly to a user
selected depth directly from the control points using precomputed
arrays which contain uniform samplings of the basis functions (ba-
sis function “tables”). However, the number of distinct basis func-
tions is unbounded since they depend, among other parameters, on
the vertex valences. Even when limited by a maximum vertex va-
lence there is still an unreasonably high number of basis functions.
The problem is further compounded when permitting creases and
corners in the surface.

To simplify this situation, an initial subdivision step is performed
using the recursive rules, so that each first level quad has at most one

irregular vertex (see Section2.1). As a result, the basis functions
with support on a given patch are a function only of the valence of
the one irregular vertex of that patch. Additionally, this first level
of subdivision provides an opportunity to apply the tangent space
modifications [1] necessary for concave corners.

Production of the limit surface tessellation proceeds one patch at
a time. Since evaluation of one patch has no effect on the evaluation
of any other patches this could be done in parallel, though we did
not yet exploit this in our implementation. For a given first level
quad, collect all control points in its 1-ring. Using the basis function
tables (see Section2.2), produce a uniform tessellation of this patch
of the limit surface with each point in the tessellation a weighted
sum of control points, the weights being the corresponding basis
function sampled at that point (see Section2.3).

2.5 Algorithm Details
As the maximum number of subdivision levels we chose five in
addition to the initial recursive subdivision step, as this appears to
be more than sufficient for practical purposes. To evaluate a patch
to depth five requires the basis functions to be evaluated on a grid
of (25 + 1)(25 + 1) = 33 × 33 uniformly spaced sample points.
The tables are stored in memory as simplefloat[33*33] arrays.
To subdivide to fewer levels, simply subsample these tables with a
uniform grid of size(2d + 1)(2d + 1) whered is the number of
levels.

Pseudocode for the algorithm (assuming five levels of subdivi-
sion) is as follows:

// N = number of control points in 1-ring of face
// C = number of channels: x, y, z, s, t, r, g, b, etc.
float sample[C][33*33];
float bases[N][33*33];
float control[N][C];

for( k = 0; k < C; ++k ) // loop over x,y,z
for( j = 0; j < N; ++j )

for( i = 0; i < 33*33; ++i )
sample[k][i] += bases[j][i]*control[j][k]

The above code only shows computation of the surface samples.
If tangent vectors are desired additional tables are required for tan-
gents in theu andv parametric directions. These would be accumu-
lated using the appropriate channels of the control points. Typically
just (x, y, z), but some applications may also require derivatives of
other channels.

Vectorization The innermost loop is easily vectorized, either
manually or by a modern compiler2, to take full advantage of the
Intel Streaming SIMD Extensions (SSE). For this reason we chose
to make the loop over the coordinates the outermost loop instead
of the innermost. The loop through the tables vectorizes more ef-
ficiently and it is now simple to add more coordinates to the ver-
tices. Since there are eight XMM3 registers, the loop over the con-
trol points can be unrolled four times, using four registers for basis
function data and four registers for control point coordinates. Us-
ing this arrangement of loops, control points can stay in registers
throughout the execution of the innermost loop. The four registers
containing basis function data each contain four consecutive entries
from a different basis function table. The four registers containing
control point data each contain a single coordinate of a control point
repeated four times. Control mesh faces at the first level of subdivi-
sion are sorted based on the valence of their (only) irregular vertex
and any tags, to ensure that faces with the same basis functions will
be subdivided sequentially. Hopefully, the basis function tables can

2The Intel C++ Compiler 5.0.1 performs best on our implementation at
the time of writing.

3XMM registers are the 128-bit registers used for SSE. Each register can
hold four 32-bit floats.



stay in the L2 cache between calls to the above function, effectively
eliminating any load time for the tables. This also means that speed
should be relatively independent of the complexity of the mesh.
That is, meshes with many different valence vertices and tags can
be evaluated at roughly the same rate as meshes with mostly regu-
lar topology because tables will rarely by loaded from memory in
either case. Experimental results have confirmed this.

3 Basis Function Table Generation
The basis functions were precomputed by generating base meshes
that include only one basis function in a certain coordinate and sub-
dividing those base meshes using an existing recursive implemen-
tation. Figure4 shows a typical base mesh with the entire mesh in
thex/z-plane except one control point which hasy = 1 on the left
and the result after three levels of subdivision and limit stencil eval-
uation on the right. They-values of this patch are the basis function
evaluated on a9 × 9 grid.

Figure 4:A base mesh used to generate one of the basis functions
for an irregular vertex with valence five (left) and the resulting basis
function evaluated at level three with the center patch highlighted
(right). They-values of this patch are the basis function evaluated
on a9 × 9 grid.

Basis functions were generated for valences 3-12 for interior
points; 1-6 for crease vertices and convex corners; 2-6 for concave
corners; and 3-7 for dart vertices4. For all these cases, limit posi-
tions and partial derivatives in the two parametric directions were
sampled on a33 × 33 grid. To simplify our code we did not take
advantage of all the available symmetries. This resulted in approx-
imately 5300 tables total for values and derivatives. In applica-
tions in which the total table size has to be kept tight the number of
available symmetries can reduce the necessary tables significantly.
The tables were generated withSubdivide 2.0by Biermann and
Zorin [1].

3.1 Counting Basis Functions
We now turn to some detailed issues during table generation. For
purposes of this discussion we always have a distinguished vertex.
This is the single vertex in a given first level face which also exists
in the base mesh. In general this is an irregular vertex, but its va-
lence may be four, making it in fact regular. We ignore this distinc-
tion below and for simplicity will always speak of the distinguished
vertex as the “irregular vertex.”
Smooth interior patches have control sets which consist of all
the vertices in the 1-ring of the irregular vertex as well as seven ad-
ditional basis functions not in the 1-ring (Figure3). There is a line
of symmetry on the diagonal of such a patch and of the seven basis
functions not in the vertex 1-ring, only two are distinct (named “1”
and “2” in Figure3), and these are the same regardless of valence
and will not be counted here. For an irregular vertex of valencek,
the number of distinct basis functions isk + 2.
Dart, crease, and corner patches are those for which the ir-
regular vertex has one (dart) or two (crease, convex corner, concave
corner) incident tagged edges. For such patches, the basis functions
are dependent on the location of the patch with respect to the tag(s).

4There are no valence 1 or 2 dart vertices or valence 1 concave corners.

Figure5 (top) shows an example of a dart vertex, while Figure5
(bottom) shows the arrangement for a crease or corner (convex or
concave) vertex. There aredk/2e distinct patches due to symmetry.
Each distinct patch has a distinct basis function for each vertex in
the 1-ring of the irregular vertex, plus one for the irregular vertex
itself: 2k +1 for dart vertices,2(k +1) for crease and corner (con-
vex/concave) vertices. The total count of distinct basis functions at
a tagged vertex with k incident faces is approximately4(k + 1)2.
Outside the 1-ring are four additional basis functions which are al-
ways the same regardless of the patch and tag locationsand valence.
Two of these are the same as in the interior case (Figure3).
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Figure 5:Control sets for patches with an irregular vertex incident
on one (top) or two (bottom) edge tags. The former is adartvertex.
dk/2e of its patches have a unique set of basis functions (all others
follow from symmetry). With two incident edge tags the vertex is
either crease(no vertex tag) orcorner(convex or concave vertex
tag). All three cases have their own set of basis functions. Note
that there are very few unique basis functions in the outer ring of a
given patch (modulo symmetries). This is trueacross all cases.

Concave corners were already enumerated in the previous
paragraph, but they require an additional projection step on ver-
tices in the 1-ring of the corner towards the tangent plane at the
cornerat each level of subdivision. The amount that the vertex is
projected is controlled by a flatness parameters ∈ [0, 1]. Differ-
ent values ofs lead to different basis functions. More importantly,
some basis functions have a 3-ring rather than the standard 2-ring
support because of this projection step. This would greatly increase
the number of tables and complicate the management of control
sets. This issue is entirely avoided by restricting the flatness pa-
rameter tos = 1. This achieves the entire projection step within
the first subdivision level, which is performed in the standard recur-
sive manner. After this projection, the entire 1-ring is in the tangent
plane. Once the 1-ring is entirely in the tangent plane, it will remain
in that plane throughout the rest of subdivision. So subsequent sub-
division may be performed as ifs = 0, and hence the increased
support width is avoided in the table generation.

3.2 Remarks
Gamma rules are used for darts, corners, and creases to guar-
anteeC1 smoothness at irregular vertices [1]. The basis functions
with and without gamma rules differ in a2-ring of an irregular ver-
tex. This means that patches that are not even on the crease are
influenced by the special rules. To avoid this, we do not use gamma
ruleson the first levelwhen generating the basis functions. This
reduces the difference to the 1-ring. They are still used in the initial
recursive subdivision and all subsequent levels. Since the gamma
modifications only matter in the limit, the surfaces generated with-
out gamma rules on the second level are still smooth.

In the original work by Biermannet al. [1] the shape of the sur-
face near corners depends onα, the angle between the tagged edges
at the corner. Lettingα be arbitrary is impractical as this would lead

http://www.mrl.nyu.edu/biermann/subdivision/


to an infinity of cases. We address this by fixingα = π/2 during
table generation. Input surfaces may of course have any angle be-
tween the creases.

Tangent space modifications are used in the original Bier-
mannet al. [1] rules to accommodate normal constraints during
subdivision. We only allow these at the first subdivision level to
avoid another explosion of cases.

Arbitrary polygons in the coarsest level require two levels of
subdivision before the irregular vertices are separated. Otherwise
more basis functions would be required to deal with faces that have
two irregular vertices.

Number of basis functions The previously mentioned total
of 5300 tables does not take into account all of the repeated basis
functions or symmetries. If this is done the number could be re-
duced to roughly2200. Note however that this would only simplify
generation and offline storage of tables. During runtime the vari-
ous symmetries would need to be explicitly “unpacked” to ensure
proper alignment of data for the SIMD instructions.

For a library which must handle any and all input it is not feasible
to store all possible tables ahead of time. Instead one could store
the tables necessary for a particular input model with the model
itself or generate them during the initial load phase using a direct
evaluation code [18], for example. In practice we have found our
particular set of tables to be sufficient for all models encountered.

4 Analysis
In a perfect world there would be no memory access latencies and
subdivision algorithms would be compared based on their operation
counts alone. Unfortunately that is not the case, and programmers
must take into account the limitations of their target architecture.
Yet it is still important to compare the theoretical maximum speed
of different subdivision surface evaluation algorithms.

For the following operation counting arguments we assume that
all vertices have valence four. This is true on average because of the
Euler characteristic of a 2-manifold mesh5. An operation (op) will
be a scalar vector multiplication (mult) or vector addition (add). For
our algorithm this means we will consider calculating only one co-
ordinate, since the others have identical operations. The final num-
bers given will be operations per base face and need to be multiplied
with the number of channels.

Table driven evaluation begins with an initial level of subdi-
vision using the recursive rules. Computing a face center takes 3
adds and 1 mult, an edge vertex 5 adds and 2 mults, and refining a
vertex 8 adds and 3 mults for a total of 29 ops per face (recall that
there are exactly two edges and approximately one vertex per face
on average in a quad mesh).

For a face with a valence four vertex, there are 16 first level ver-
tices with basis functions whose support overlaps the selected face.
So 16 mults and 15 adds are necessary to calculate each vertex in
the tessellation. Tessellating each first level quad to a depthd cre-
ates(2d + 1)(2d + 1) vertices. Ford > 1 (d = 1 is the special
case of only the first subdivision to separate the irregular vertices)
the total operation count per face is:

#(d) = 29 + 4 · 31 · (2d−1 + 1)(2d−1 + 1)

d=1 d=2 d=3 d=4 d=5 d=6
#(d) 29 1145 3129 10073 35865 135065

5A more careful analysis reveals that the total cost per mesh is related
to thesquaresof the valences. However, meshes have to become very large
and very pathological for our assumption to break the counting argument in
a significant way.

Recursive subdivision which proceeds on a face by face basis
simply repeats the calculations that led us to the total of 29 opera-
tions per face. Each face is split into 4 at each level of subdivision,
so the total number of operations for d levels of subdivision is:

#(d) = 29
∑d−1

i=0 4i = 29 · (4d − 1)/3

d=1 d=2 d=3 d=4 d=5 d=6
#(d) 29 145 609 2465 9889 39585

To calculate limit positions requires an additional 8 adds and 3 mul-
tiplies for each vertex at the finest level. The formula becomes:

#(d) = 29 · (4d − 1)/3 + 11 · 4d

d=1 d=2 d=3 d=4 d=5 d=6
#(d) 73 321 1313 5281 21153 84641

Our algorithm has a higher operation count than that of recursive
subdivision. Its advantage is that memory is accessed in a very
regular, cacheable manner. Recursive subdivision does not access
memory in a sequential manner and its performance is limited by
the memory subsystem.
Forward differencing takes advantage of the piecewise poly-
nomial nature of the subdivision scheme away from irregular ver-
tices. Regular patches are evaluated with forward differencing.

There is considerable overhead in initializing the forward dif-
ferences. Exact numbers would require significant analysis, so we
will make a conservative estimate of 50 operations. This overhead
makes it senseless to use forward differencing until the patches are
tessellated to at least4. If a quad has four irregular vertices, the
first regular patches are created on the second level of subdivision,
and are not tessellated to4 × 4 quads until the fourth level. So this
method may not be superior to recursive subdivision until the fourth
level.

The cost of one step of forward differencing is 3 adds. So the
cost of tessellating a patch with4n vertices is approximately3 · 4n,
leading to a total consisting of
• the cost of subdivision to 3 levels near base vertices. This is

roughly the same as the cost of subdividing the base mesh to 3
levels. Ford > 3, this must be done in each face and for each
vertex, so the cost is approximately four times the cost of three
levels of subdivision;

• the cost of creating control points for the regular patches. This
is the same as the cost of subdividing one face, 29 operations;

• the overhead of forward differencing;
• the cost of forward differencing.

#(d) = 4 · 609 + 3 ·
∑d

i=4(29 + 50 + 3 · 4i−2)

d=4 d=5 d=6
#(d) 2817 3630 6171

Forward differencing is clearly the most efficient way to tessellate
a surface in terms of operation count, but considering the amount
of recursive subdivision involved it is still subject to high memory
latency issues. It would certainly be more efficient at higher levels
of subdivision, but more than six levels is exceedingly expensive in
most applications and very rarely required.

4.1 Implementation Issues
Some vertices in the tessellation are shared by more than one patch
and are calculated more than once. Due to the imprecision of floats,
their positions may differ slightly, enough to cause pixel dropouts
during rendering. To avoid this problem, choose one computed po-
sition to be “correct” and copy its value to all other instances of that
vertex.



Input mesh levels tessellation limit pos (P3) pos,tangents edge write limit pos (P4) pos,tangents edge write
64 quads 6 262144 quads 37ms 173ms 8ms 8.6ms 31.1ms 3.3ms
64 quads 4 16384 quads 2.5ms 7.0ms 2.5ms 1.11ms 2.68ms 0.87ms
64 quads 2 1024 quads 0.84ms 1.67ms 0.51ms 0.52ms 0.92ms 0.34ms
384 quads 6 1572864 quads 186ms 660ms 53ms 52ms 166ms 21ms
384 quads 4 98304 quads 18ms 45ms 20ms 7.8ms 17ms 7.6ms
384 quads 2 6144 quads 7.7ms 12.5ms 9.5ms 4.4ms 6.6ms 5.0ms
6144 quads 4 1572864 quads 298ms 730ms 322ms 125ms 276ms 114ms
6144 quads 2 98304 quads 137ms 213ms 170ms 66ms 100ms 74ms

Table 1:Timing results showing size of the input mesh, number of levels of subdivision, number of quads after subdivision, timings to calculate
limit positions only, to calculate limit positions and limit tangents, and to perform an edge writethrough to guarantee no pixel dropouts. The
times include the time spent calculating the first level of subdivision using recursive rules. Timings were taken on a 733 MHz PIII and a 1.7
GHz P4. Timings are averages over hundreds of runs.

Since each patch is evaluated separately from all other patches,
there is no need for all patches to be sampled at the same rate. This
provides simple, patch-based adaptivity. As with other adaptivity
schemes, special care must be taken to ensure neighboring patches
with different levels of tessellation do not lead to cracks in the sur-
face. One solution is to render triangle fans (Figure6) connecting
one vertex in the coarser tessellation to many vertices in the finer
tessellation.

Figure 6:An adaptively subdivided mesh. Triangle fans are used to
prevent cracks at boundaries between patches evaluated at different
depths. Notice the patch that is adjacent to two patches that are
subdivided two levels deeper. There is no restriction that adjacent
patches must be subdivided to within one level of each other.

If two patches which are evaluated at different levels meet at a
crease, their positions must match to prevent cracks but their tan-
gents are in general different. Positions from the finer tessellation
can be used at the boundary of the coarser patch, but tangents can-
not. This can be addressed in one of two ways
• force opposite sides of a crease edge to be subdivided to the

same number of levels. This way there are always true limit
tangents everywhere, and in meshes with relatively few creases
this restriction is not a problem;

• interpolate the tangents of the nearest two vertices in the coarser
tessellation. The pros and cons are the opposite of the first so-
lution. These interpolated tangents should be fairly accurate,
otherwise the adaptivity criterion would have caused that patch
to be subdivided further.

This issue is not limited to tangents, but also applies to texture or
color coordinates, or any other parameters one chooses to subdi-
vide.

For recursive subdivision engines, adaptivity can be achieved by
simply refining the surface until a local flatness criterion is satisfied.
But this algorithm must determine how many times to subdivide

each patch based only on the first level control points. A simple,
robust solution to this is an open problem. A simple function that
takes into account how much the control points deviate from the
plane of the control face works adequately.

5 Results
Table1 shows several timings of our implementation run on various
input meshes. There are several things to observe in this data:
• A flops/cycle count for 384 quads subdivided to 6 levels in 52ms

at 1.7 GHz, assuming 16 multiplies, 15 adds, and one store:

384 quads· 662verts
quad

· 3 coords
vert

· 32 flops
coord

= 1.6 × 108flops

1.6 × 108 flops
.052s

· 1s

1.7 × 109 cycles
≈ 1.8 flops/cycle

• Consider the timings for 384 quads subdivided to 4 and 6 levels,
with and without normals, on the P3. One would expect calcu-
lation of normals to increase the time by a factor of three. The
ratio 45/18 < 3, but this can be attributed to an overhead of
about 5ms. The ratio660/186 > 3 is more interesting. This is
caused by the tables not fitting well in the L2 cache. The tables
in this case occupy about 204KB, which is uncomfortably close
to the 256KB cache size. This effect only occurs when subdi-
viding to six levels. Tables for five levels occupy 54KB, which
easily fits. However, it is still cheaper to subdivide one level
with recursive rules and five with tables than, say, three levels
with recursive rules and three with tables (compare 384 quads to
6 levels with 6144 quads to 4 levels) because the recursive rules
are not as fast as tables in the implementation.

• The P4 is 50% faster than the PIII, clock for clock. The P4
achieves 1.8 flops/cycle, whereas the PIII only achieves 1.2
flops/cycle. We attribute this to the NetburstTM [8] architecture,
in particular the new cache subsystem and high speed bus.

• Edge writethrough can be a serious performance hit, and should
not be used except for very high quality renderings. Such
writethroughs are costly because they require unaligned, non-
consecutive writes to far away memory.

• The mesh with 64 quads has 70% tagged vertices, but its perfor-
mance is comparable to the other results.
We can approximate the time spent in the innermost loops in the

6-level execution time by subtracting the 2-level time from the 6-
level time. If we take into account the loads and stores when count-
ing operations, then there are 48 ops/coord and calculations similar
to the above give an estimate of 2.98 ops/cycle on the P4 with a
theoretical limit of 4 ops/cycle. Inspecting the disassembly of the
innermost loops of our implementation, there are 61 clock cycles
spent in these loops compared to a theoretical lower limit of 48 (the
difference being due to loop overhead). So instead of an upper limit



of 4 ops/cycle, the best we could hope for is 3.15 ops/cycle. Our
implementation thus performs very efficiently on the P4, but not
quite as well on the PIII. We attribute this to data transfer latencies
that prevent the PIII from achieving optimal speed.

It is hard to determine timings that fairly represent adaptive per-
formance. Suffice it to say that adaptive performance is as one
would expect it to be based on the uniform subdivision timings.
That is, there is no performance penalty associated with adaptivity
aside from calculating the adaptivity criterion.

Since the tessellations have such a regular layout and the data
structures are so simple, it is possible to render efficiently using
quad strips and triangle fans for adaptive subdivision. On an nVidia
Quadro2 Pro card our implementation can render 8 million un-
shaded quads or 3 million shaded quads per second. The Volk-
swagen model (Figure7) evaluated at level four has 77312 quads,
which can be rendered at 40 f/s on the Quadro2 Pro. It takes our
implementation only 14 ms on the P4 (base mesh has about 300
quads, so timings are close to the timings for the 384 quad mesh)
to generate this subdivided mesh with tangents, little over half the
time it takes the video card to render. Using 50% of the CPU is
enough to saturate the graphics card assuming that one evaluates on
every frame. For static models of course, evaluation would only be
required once.

Figure 7:A Volkswagen model control mesh with many tags and its
limit surface at level four.

6 Conclusion and Future Work
We have demonstrated an extremely efficient approach to subdi-
vision based on precomputed tessellations of Catmull-Clark basis
functions. These can be produced with any standard subdivision
code and may contain crease, dart, and corner rules. The method
carries over to other subdivision approaches in a straightforward
fashion. The algorithm is well-suited for parallelization both at the
level of SIMD operations and at the level of parallel execution units.
The results should apply equally well to other modern CPUs with

multiple execution units, deep pipelining, and their general sensitiv-
ity towards caching issues. The improvements in the memory archi-
tecture of the P4, in particular less bus transfer resource contention
within the CPU and faster access to the cache, yield a performance
improvement of 50%.

In future work we hope to perform more extensive performance
comparisons between our table driven approach and depth first re-
cursive subdivision as well as forward difference based approaches.
The recursive version is of particular interest for multiresolution
surfaces which add detail displacements at every subdivision level
to significantly enrich the set of surfaces that can be modelled in
this fashion. Such an engine would also be very useful for fast de-
compression of geometry [10]. Additional work should be devoted
to adaptive rendering criteria which can be evaluated fast enough to
amortize their cost.

Source code for a library and demo is available at:
http://multires.caltech.edu/software/fastsubd/
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[19] ZORIN, D., AND SCHRÖDER, P., Eds.Subdivision for Modeling and Animation.
Course Notes. ACM Siggraph, 2000.
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