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Abstract

This paper presents an approach to animate elastic deformable ma-
terials at interactive rates using space-time adaptive resolution. We
propose a new computational model, based on the conventional
Hooke’s law, that uses a discrete approximation of differential op-
erators on irregular grid. It allows local refinement or simplification

of the computational model based on local error measurement. We
in effect minimize calculations while ensuring a realistic and scale-
independent behavior within a given accuracy threshold. We demon-
strate this technique on a real-time virtual liver surgery application.

1 Introduction

Although simple interactive animation techniques exist and are used
in virtual reality systems for instance, they mainly simulate rigid
bodies. Using simplified solid mechanics laws, they focus on is-
sues like collision detection and contact modeling, where naive ap-
proaches are computationally intensive [Bar96, Fau98]. A smaller
amount of effort has been put into deformable object simulation.
The majority of the existing techniques have to be performed off-
line, and cannot be used in a virtual environment with real-time dis-
play.
However, recent work has demonstrated unrivaled low computation
times for deformable objects or surfaces [BW98, DSB99]. These
approaches rely on implicit integration to advance the simulation in
time with no or few concerns about stability even at large time steps. . . ; !
We may soon observe a number of VR applications, like interactive ~nother model, introduced for highly deformable materials like
animation of deformable tissues for surgery training for instance.  dough or mud, proposes a space and time adaptive physics-based
The current state-of-the-art animation techniques use constant spatéchnique based on SPH [DCG96, GCEB]. This time, a state
tial discretization (fixed number of mass elements). Yet, we should €quation which represents the object’s behavior (like stiffness) is de-
be able to save even more computation in adapting discretization ac-fined by the user. The particles discretizing the material subdivide
cordingly to the complexity of the occurring motion. A body under- and merge according to a local energy criterion, and derive appro-
going significant local deformation should be refined in this region Priate interaction forces from the state equation to ensure the same
only, to ensure both a precise geometrical description of the defor- 9lobal behavior. Simulating structured objects like human organs
mation and a prescribed accuracy. Large amount of computationWith this method is, however, inappropriate. From a theoretical point
may be saved using such an adaptive technique, similarly to what is©Of view, the SPH formalism is really adequate for a large number of
now widely used in simulation of lighting by radiosity techniques. Particles if a desired accuracy is called for. In practice, the model
Unfortunately, ensuring a same global behavior for the object, what- &S proposed simulates viscous fluids, and is not well conditioned for
ever the discretization rate is’ remains Cha”enging. structured Objects. We use the_same_ phllosophl_cal approach in this
paper, as we propose to adaptively simulate a given equation of mo-
. tion. Yet a large amount of particles is no longer needed to obtain
1.1 Prior work convincing results.
The first model in Computer Graphics to animate deformable bod-
ies was introduced by Terzopoulesal.[TPBF87], using finite dif-
ferences or finite elements for the integration of energy-based La-1 2 Approach
grange equations. This initial model, based on Hooke’s law for ) .
perfectly elastic objects, has been improved subsequently to handleln this paper, we propose to improve upon the amount of sample
plasticity and fractures [TW88, TF88]. Finite element techniques POints needed to animate deformable objects. Using a general elas-
have also been proposed [GMTT89], including a real-time simu- ficity model, we derive a partial derivative equation guaranteeing a
lation of elastic bodies [BNC96, DCA99], but using quasi-static global behavior for the object in Section 2. We then propose in Sec-
models, thus loosing the dynamic behavior. As these physically- tion 3 simple differential operators to integrate this latter PDE even
based methods are computationally intensive, other approaches apOn moderately irregular grids. Once an error criterion is defined, we
peared, allowing fast animation of simple dynamic objects by tak- demonstrate in Section 4 that a space-time adaptive integration, us-
ing into account only some possible deformations or vibration ing local refinement/simplification of the mass and time discretiza-
modes [PW89, WW90, MT92]. Unfortunately, such restrictions on tion, is easily handled. We describe our implementation in Section 5,
the behavior considerably affect the realism of the animation. detailing data structures and surface display. Finally, we show a vir-
As mentioned earlier, all these techniques use a fixed space dis-tual surgery simulation resulting from our approach in Section 6, and
cretization rate, and also usually a fixed time discretization rate. Re- conclude in Section 7.
cently, a model using adaptive resolution has been developed for the
simulation of hanging clothing [HPH96].
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The mass-spring network modeling the piece of cloth refines locally
as soon as two adjacent springs form an angle exceeding a given
threshold to provide a more accurate shape description. This idea al-
lows the model to converge towards the static equilibrium faster by
limiting the number of masses used during the calculation. Unfortu-
nately, such a simple model cannot guarantee a global and identical
behavior during the animation: the dynamic behavior of the sim-
ulated object will change incoherently when a refinement occurs.
Additionally, mass increases with subdivision. Even if collisions
with obstacles are handled correctly, the cloth weight changes and
prevent any adequate simulation if the cloth is pulled for instance.

In this paper, we basically simulate the same model as in [TPBF87].
Nevertheless, we distinguish from this approach in our mathematical
development. This section reviews the standard physics used by our
method, detailed in [TG70] for instance.

This article was published in the proceedings of the Eurographics Work-
shop on Computer Animation and Simulation’99, Springer-Verlag Editor.



2.1 Notation rate tensorand notedt, expresses the intrinsic deformation rate act-

We use a slightly nonstandard notation for the sake of simplic- ing on an element of matter:

ity throughout this paper. Vectors will be indicated in bold:=

(ux Uy uZ)T, matrices in calligraphyA = uu’. We also make use

of compact notation for derivatives. For instanagy = duy/dy, or
_ 32 2

Uzxx = 0Uz/0X“.

; 1 2dy x dxy+dyx Oxz+dzx
(A+A")= Oey+dyx  2dyy  dyz+dzy | (3)

£= -
2 Ox z + dzx dy,z + dz,y 2dz;

1
2

As for the stress tensor, we emphasize that this tensor captures only
first-order deformation rates, and must be seen as a linear approxi-
mation of the local deformations.

2.4 Deformation law

A physical model for an object defines how this object deforms ac-
cordingly to applied forces, and vice-versa. Thus, we have to define
a relation between the stress tensor and the strain tensor. We choose
theHooke’s lawas it is one of the simplest, yet it describes precisely
(b) enough a large range of common materials. This law stipulates (with
13 being the 3« 3 identity matrix):

Figure 1:(a) Forces acting around a mass element. (b) Force acting
on a given surface element dS, centered on a point M and defined by 0 =2pe+Atrace(e) I3 4

its normaln. . . . .
Given this hypothesis, we can now deduce displacements from

2.2 Stress tensor forces, or forces from displacements.

A small elementM of matter receives forces from all around (Fig- > , .
ure 1(a)). One way to describe these peripheral forces acting locally2-> Lame equation . _ _
is to evaluate the surface force (called stress) acting on a given sur-If we use the above deformation law, the global equation of motion

face element centered & with a normaln. This forceF will have can be rewritten, omitting gravity for simplicity, as (see [TG70]):
a component along, analogous to a pressure, and an orthogonal .
component, creating shearing (Figure 1(b)). Flress tensothen pa=pAd + (A +p)O(divd) (5)

defines dinear application between all normals and their associ- . I , . .
ated stresses. This33 symmetric matrix, usually notes} actually by just substituting Hooke's law in the fundamental equation of mo-
gives the applied stress forEdor a given surface element with nor- ~ tion pa= Div o and expanding the different derivative terms. This

maln: formulation, initially due to Lare; encapsulates the strain/stress law
on=F. in a partial derivative equation that offers another interpretation of
) ) ) the Hooke’s law. We note that such a physical model is the com-
From this tensor, we deduce ttesulting force per volumenit act- position of a wave propagation and of a volume preservation con-
ing on the matter element as being the divergencelof Then, if straint. Since the acceleration is the second time derivative of the
p is the mass density of the considered elemgrhe gravity ac- displacementl andAd is the sum of the second spatial derivatives,
celeration, anch the acceleration of this element, we can use the the first part of the latter equatique. = PAd is, indeed, a hyper-
fundamental principle of mechanics to write: bolic partial derivative equation, also calle@ve equationThe ve-

locity of propagation in this case i< = \/p/p. The other part,
pa= (A +pO(divd), represents a volume preservation term. Since
divd is thevolume expansigrfollowing the gradient of the volume
expansion will tend to restore the initial volume. According to the
values ofA andp, we can interpret Hooke’s law as a deformation
wave with more or less compressibilify This interpretation will
2.3 Strain tensor help us to design our numerical simulation.

We calld the displacemenbf an element of matter from its initial

position. This defines a vector field in the body. A pure translation ; ; ; ;
of an object will create a constant displacement field, while complex 3 Simulation at a fixed resolution

troduced above for a fixed, given resolution. Although we basically

pa = Divo+pg. Q)

In order to compute the stress tensor, we need to know the current
state of deformation undergone in the material to derive local forces
from it. We next define the strain tensor for that matter.

FAT A simulate the same model than in [TPBF87], our numerical algorithm

i | is completely different. In particular, we will show that we can ex-

4 / tend it to handle adaptive resolution easily.

| / 3.1 Principle

Lo Since we need to simulate a given material at different levels of res-
Rest position Trandation Deformation olution, we have to rely on a behavior equation (which can be called

Figure 2: An object and some possible displacement fields defining State equatiopor differential equation of motigrdefined regardless
the current shape. of any time or space discretization. As mentioned in the previous

By definition. th dient of thi tor field is: section, we decide to adopt the general Hooke’s law to describe our
y definition, the gradient of this vector held Is. physical model. In order to spare as much computation as possible,
we will use theLamé equationEqu. (5)) as no strain and stress ten-

Oex  Oxy Oxz sors need to be used. It encapsulates the physical model into a simple
A=grad(d) = [ dyx dyy dy (2 partial differential equation, hiding the use of strain and stress, thus
dzx Ozy Gz sparing memory requirement. Animating an object requires a mass

discretization, followed by an integration of the PDE over the sam-
The antisymmetric part of this matrix represents only the rotational ple point-masses, and over time. As the object moves and deforms,
part of the displacements, while the symmetric part, cadigdin

2Although it can not be perfectly achieved with this formulation, the
1The divergence operatddiv for a matrix is the vector formed of the preservation of the object's volume is usually considered as good when
divergencediv of each line, withdiv(u) = Uy x + Uyy + Uz_. A > 10Qu, which we use in our examples.
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Figure 3:A 10 cm cube oscillating with gravity, one of its face being fixed. We measure the vertical displacement of one of its corner (arrow)
at different spatial resolutions. Levels are made of 64, 512 and 4096 particles. Note that no damping at all was used for this simulation.

the discretization may end up being an almost arbitrary grid. We '& /./ AW I e P A
thus need to define a way to efficiently integrate this PDE over an . e .~ o - .
irregular sampling, while ensuring a good accuracy threshold. * ! '

[ Z e ¢ i \o “ . *
3.2 Discrete approximation of operators Relative displacement field = Radial components + Rotational components

dient of the divergence of the same field(div d). Although Finite
Difference formulas exist on regular grids, they do not apply here: 7
we must assume an arbitrary complex grid since the object continu- . ) . . :

ously deforms, and also because the discretization itself may change.':"-:]u"_a 45 Thed<_1|TpIacement field candbs separated f'n two corgp(r)]-
However, approximating such operators on irregular grids is not an N€nts: the radial component (created by pressure forces) and the
easy task, and has been extensively analyzed in physics and matheotational component (created by shear forces).

matics.

To be able to integrate Equ. (5), we just need to approximate two |, \\) (1

operators: the Laplacian of the displacement fiald, and the gra- / @ﬂ @
2
=

v and unit vectou, we decomposeg alongu and a vector normal
: to u through the relationv = (v-u)u—u x (u x v) with u = ljj /Ij;
Laplacian operator

T ) . L (see Fig. 4), we can expand Equ. (6) into:
Milne in his thesis shows how sensitive the approximation of a sec-

ond derivative can be in 1D, creating noise source problem as soon 2 dj—d
as neighboring samples are not centered [Mil95]. Fortunately, the Adi = I .
extension of Finite Differences in 1D proposed by Fornberg [For88] 2l jndgvors i

solves this noise problem. It consists in fitting a quadratic function

between a sample and its two closest neighbors. For three samples [(d' —di)- Iij] TR y [Iij x (dj —d')]
of a functionf spaced at respectivelyandd from the central point, _ 2 PR T Ty Ty I

we Obtain: B ZJ ll] ] neighbors l']
2 (fia—fi fipg—f
f_H — I
: 6+A< 5 A i Lo Lo
. o . . 2 [(dj—di)-HE 2 X (gr % (dj —di))
A straightforward generalization of this formula to 3D gives the = Z (. z ! !
scale-dependent umbrella operator [DMSB99, Fuj95] (wigre: >ilij j neighbors lij Yilij | néighbors lij
||di —dj|| is the distance between sample poirasdj.): (8)
Therefore, comparing Equ. (7) and (8), we decide to identify the
Ad — 2 dj—di ©) radial component as being the gradient of divergence:
= —
Z] lIJ ] neighbors ll] I
o . . . . 2 [(dj—di)- ]!
This simple formulation, recently introduced in Computer Graphics O(divd); = —— R AN (9)
for mesh smoothing through diffusion for its better properties com- Silij  néighbors lij

pared to the uniform umbrella operator, allows us to have a good

approximation of the Laplacian whose accuracy depends little on We will see in the next section that these two operators provide good
the neighboring distribution of particles. We delay the quantitative results in practice.
results to Section 3.3.

Gradient-of-divergence operator 13'h3e oﬁ%ﬁrgg?ri;?r? t\cﬁll;(ijrlrtl)é\te our deformable model is straight
Now that we have a robust Laplacian operator, we must derive @ ¢orward. At each time step:

gradient-of-divergence operator in a coherent way, to provide a sta-

ble pair of operators for our simulations. : . : _
By expanding again the second derivatives involved in the Laplacian * On each particle, evaluate the internal forces using the Lapla

operator, we find the following relation: cian and the gradient-of-divergence operator,
Ad = O(divd)— Ox (Oxd) @) e Deduce the acceleration using Equ. 5,
wherex is the cross product operator. e Integrate the acceleration over a time stigo update posi-

tions and velocities.

We know that the divergence dfis a measure of the volume expan- The Laplacian and gradient-of-divergence operators behave very
sion as mentioned in Section 2.5. As shear strains don't create anywell at different resolutions. Figure 3 demonstrates that even in

volume change, only normal (also called radial) strains affect the three different resolutions, an object undergoes the same deforma-
volume. Therefore, we propose to decompose the Laplacian into ation in time. It validates our scale-dependent umbrella operator, and
radial and a rotational component. Remembering that for any vector We can move forward to adapt discretization.



4 Space-time adaptive simulation Time stepping

Conventional models usually discretize matter at fixed resolution in We use Courant's condition [DCG96] for the Laraguation:

space, and often use a fixed time resolution too. These discretization

rates have to be defined by the uagariori. As the number of mass dt<h Po (12)
elements and the size of the time step often affect the overall result A4-2p

of the animation, the user has to go through a series of trials and cor-

rections before obtaining what (s)he wanted. Moreover, if a shock whereh represents the smallest distance between this particle and
happens during the animation, the time step of the whole sequenceone of its neighbor, angg the material’s rest density. This time
(resp. the number of particles) has to be taken small enough (respstep is the maximum allowable one for this particle, but we also
large enough) to avoid divergence, resulting in unbearable computa-ensure that the time step is sufficiently small to handle sudden and
tion times. fast deformations. This can be done for instance by constraining the
Numerous CG techniques use adaptive time step, but we propose tdime step to satisfy:

optimize the sampling rate of our deformable model both in space

and time. Similar techniques already exist in computational physics, |ladt|| = ||Av|] < AVmax

as the adaptive finite element method for instance. In this paper, ) )

we propose a simpler model that results in a relatively straightfor- This way, we will never get fast velocity changes, plausible cause of
ward implementation and a reduced computational time. Our model divergence. We will pick the biggest time step satisfying the two
is designed to offer aautomatic adaptive resolutioboth in time above criteria, ensuring an optimized time step for each particle.
and in space that concentrates computations where and when reOther criteria can be added depending on the application to make
quired. This section reviews this technique, which will offer the sure no instabilities can arise during the animation.

user a tunable trade-off between precision and efficiency by concen-

trating computations where and when required. 4.3 Validation
Implementing these criteria for space-time adaptivity exhibits stable
4.1 Space adaptivity and adequate behaviors. As demonstrated in Figure 5, an object at

. . . . . its coarsest resolution at rest will subdivide in highly stressed re-
Since the basic model developed in the previous sections ensuresinng ‘i e “where the user acts and in regions whe?e t¥1e deformation
a same behavior at any spatial resolution, we can adapt the spatiahonagates. The time steps are adapted automatically to ensure a sta-

discretization rate during the simulation. If the user uses a tool to i riti

: . L - . i . e result. Here, the scale-dependent umbrella operator is critically
manipulate the object, adding new sample points with refined time ] ; ; ;
step near the tool to increase the quality of the simulation in this areaneedEd’ as we deal with an irregular resolution [DMSB99].

is particularly convenient. We will obtain a more accurate feedb

force, along with enhanced visual complexity. When the user mc P

the tool to another place, the previous area can be simplified k ti;i@{:;% SES
so that computations are now mainly dedicated to the new are £t “"\:ﬁfg >
interest. Therefore, two criteria have to be defined: a criterion ¢ :‘§‘ DN
trolling if refinement has to be performed, and another criterion & ‘
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lowing simplification. The first criterion is important for accurac Q%j\\ , ;&&;ﬂ i
while the other one is capital to save computations. \ .\\'Nﬁ\‘g‘:iERaky/m”
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Our physical model relies on approximations of second derivatives ) ] ) )
of the deformation field, indicating the rate of displacement vari- Figure 5:A parallelepiped undergoing a tool's deformation. Figure
ation. As mentioned earlier, the stress/strain tensors assume locala) shows the coarser (24 particles) and higher (1056 particles) res-
linear deformation. As a consequence, we need a refined samplingolutions. Figure (b) shows the intuitive sampling occurring during
whenever the displacement field varies too suddenly, i.e., when thesimulation (the particle’s color is proportional to its displacement).
local “frequency” is too high for the current discretization rate. A
linear approximation does not fit such cases anymore. This can be
tested using the Laplacian operator (which measures the variation5

from linearity), already available, through the following relation: Implementation

In this section, we detail our implementation, presenting data struc-
h? ||Ad|| > €max (10) tures that efficiently handle the multiresolution properties of our
method. We also describe a damping implementation as well as the

whereh represents the shortest distance between this particle angSurface representation we used for visualization.

its neighbors. We found this coarse, yet fast estimation adequate in .

practice: in our tests, spatial refinements appear where and when we>-1 ~ Spatial data structures

intuitively thought it should. This implementation is not as general as the model described in pre-

Similarly, we use an opposite criterion for the simplification. A par- Vvious sections: we optimized it for limited deformation in order to

ticle and its siblings can be replaced by a single coarser particle if, improve the efficiency of our simulation. We have chosen to limit

for each of them: the range of applications of our simulator to soft materials (such as a
h2 1Ad|| < &mi (11) human organ). If we assume that during the simulation, the material

min will not be deformed too much, we can assume that the topology will
Once again, despite the simplicity of this criterion, we obtain ade- not change. In practice, this means that the neighborhood of a given

quate results as simplifications appear in “calm” areas as desired. POint of matter will remain the same, thus allowing us to precompute
and store it, saving a lot of computational time. It also allows us to

build ahierarchicalrepresentation of the material.

4.2 Time adaptivity ) . .
Once the space discretization has been adapted accordingly, tim%opologlcal octree  All the particles are sorted in an octree, the

discretization has also to be adapted to prevent instabilities. Keep- ﬁ_hirl]dre_lT (respl. tﬂe parent) of a ]given pafrtiﬁ_le be"ﬁ% thel_particles
ing a too large time step can introduce severe inaccuracies due to the/hich will sample the same zone of space if this particle splits (resp.
approximation of constant acceleration during this time step. Nev- Mmerges). The octree structure is well suited for a hierarchical repre-

ertheless, too little a time step would lead to consequent loss of effi- SENtation of space, since a cube recursively divided in 8 new cubes
ciency. We thus have to adapt the time step carefully. Moreover, we °fférs the only uniform sampling of space at each level of subdivi-
want to adapt the time step locally, so that regions undergoing no Orsmn.F_The ogt_ree is constructed in a bottom-up fashion as follows
little stress are not updated as often as regions with high stresses. (S€€ Figure 6):
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Figﬁre 6:Recursive bottom-up construction of the octree. Size rep-
resents particle’s mass

— (@) The cubic 3D grid is fitted on the simulated object bounding
box and is then recursively divided up to its higher level.

— (b) We then determine which of these small cubes are inside the
object and simply skip the other ones. The remaining particles form

our octree’s higher level, their mass is computed as being the object

total mass divided by their number (for a uniform material).

— (c)&(d) The previous levels are then recursively built from this
one, regrouping each group of 8 (or less on the boundary) particles
in a new one, using

m=Ym, p= 0P (13)

wherem is the mass, ang is the position of the parent particle.

Structure update  The restricted octree imposes some con-
straints for splitting/merging particles. At each time step, splitting
and merging lists are computed using the criterion described in sec-
tion 4.1. These lists are then parsed, favoring splitting for the sake
of stability:

— A particle can merge if and only if all its neighbors have an equal
or lower level in the hierarchy.

— A particle can split if and only if all its neighbors have an equal
or higher level in the hierarchy. If it's not the case, the lower level
neighbors are inserted in the splitting list, so that this particle can
split later (perhaps not at the next time step as the neighbor may also
have to wait before splitting : this is a recursive process).

Each particle has pointers to all its potential neighbors, and keeps
a list of all the active (i.e. really simulated) particles among them.
When a particle merges or splits, precomputed tables allow us to
update its active neighbor list with no computations, as well as the
active neighbor lists of its neighbors.

Position  When some particles merge, their parent averages their
different values (position, speed, displacement...) to update its own
values. The problem is more complex when it comes to the splitting
of a particle. As we want our sampling of space to be as uniform as
possible, the positions of the new particles have to be carefully com-

This average guarantees mass preservation and offers a good spatigluted. We chose to define the particle’s position in a frame centered

sampling of the object.
Note that this is @opological octree and not &patial octree. It

on its parent position (See Figure 8(b)).
The axis of this frame are defined by the parent’s neighbors (through

stores the particles’ child/parent relationships, but does not representhe center of mass of these neighbors for each direction). This local

a classical octree division of space, as it will be deformed during the
animation when particles move.

Neighbor structure At a given level of hierarchy, we define a

coordinate system provides adequate new particle positions, even if
the splitting occurs when the object is deformed. A special treatment
is done for boundary particles which local frame is defined by the
mirrored parents’ neighbors. During the simulation, if the parent’s

particle’s neighborhood as the set of all the particles that are adjacentneighbors are not currently active, their positions are computed from

in the topological octree, by a face, an edge or a vertice. Figure 7
shows this in 2D.

@

(©
Figure 7:Definition of the neighbors (in bold lines) of a given parti-
cle (filled), in 2D. (a) same level, (b) higher level and (c) lower level.
In 3D, each particle has 89 potential neighbors.

In order to restrict the number of possible neighbors, and for sam-
pling quality reasons, we will ensure that our octree remains re-

their children using (13). When merging, each particle stores its new
local coordinates, so that it appears at the same place when its parent
splits again.

5.2 Temporal data structure

As each particle samples a volume eight times smaller than its
parent,Courant’s condition(see§4.2) stipulates that its time step
should be at least twice as small as the one its parent uses. As a
consequence, and in order to synchronize the time steps easily, we
choose the time steps to be a power of two multiple of the minimum
time step (those of the smallest particles), which is determined from
the material’s stiffness using equation (12).

In practice, all the active particles are sorted in lists corresponding to
their time step, which are parsed when needed. Changing a particle’s
time step simply means to transfer it to another list. Determining at
each time step which lists have to be simulated can be very quickly

done using a binary operation on the value of the current number of

stricted [VB87]. During the animation, two neighboriagtivepar- iterations done.

ticles can only differ by one level in the hierarchy (see Figure 8(a)).
It limits the number of possible neighbors of a given particle, and .
still assuming that the object is not too deformed, allows us to pre- 5.3  Internal damping

compute and store the entire neighborhood of each particle. In prac-Adding damping forces in this model allows us to handle a larger
tice, in 3D, the total number of potential neighbors is 89 for each set of materials’ behaviors. Damping adds realism in the anima-
particle, but as they cannot be all active at the same time, the effec-tion which would elsewhere oscillate endlessly. Note that these
tive maximum number of active ones is 56 (if all the neighbors are oscillations, which are perfectly normal for an undamped elastic
split), and the minimum is 14 (all the neighbors are merged). system, are indeed obtained with our simulation which presents a
great stability during the simulation. We add to each particle a
first damping force which is negatively proportional to its speed
(Fg = —kq.speed. o )

We also add an artificial “viscosity” in our model, by adding a force
which represents the effects of a particle neighbors’ motions on the
particle itself. In other words, this force will try to make a particle
follow its neighbors’ average motion, adding internal coherence in

the material. Inspired by SPH formulations [Mon92, DCG96], we
Figure 8: (a) During a simulation, particles’ neighbors can only

have chosen to use
%} mj (Vj — Vi)
s ghborsj
belong to the same level of resolution, to the level above, or the level
below. (b) The local coordinate system (bold arrows), defined by the This formulation can be seen as an extension of those used with
parent’s neighbors ensures a good spatial sampling, even when thea uniform sampling of space. As our octree remains restricted
object is deformed. during the animation, it gives good coherent results in practice.

Neighbors' face
~__ barycenter

£_Parent’s nei ghborsj

(b)

@
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F\/ —
2iMj nej

(14)



The influence of a neighbor has been chosen to be proportional toout of the tool, and these displacements are transmitted to the inner

its mass (intuitively linked to the contact surface). This force was linked particles (if a particle is linked with several moving nodes,

restricted to its damping action: it cannot accelerate a particle, nor it averages their imposed displacements). A simulation step is then

can it inverse the direction of its speed. normally performed and the accelerations these particles compute
are then summed and transmitted to the user’s force feedback de-

Note that damping is very special, as we cannot guarantee a same bevice.

havior whatever the resolution. Our strategy, close to similar work in

physics [Mon92], is to use the previous formulation as it minimizes

the observed behavior difference at each level. However, we only 6 Results

slightly use this force in our examples, mainly to create a more rigid ) ) ) )

material. As the user only sees the multiresolution result, and as theWe tested our implementation on different basic examples, and on

result is visibly plausible, we stick to this method. a concrete medical simulation. We describe these tests and discuss
results in the next two sections.

5.4 Surface management

We describe here how this model is embedded in a graphics environ-6-1 ~ Proof-of-concept example _ _
ment: the discrete particles are linked with a surface representing theWe chose the “classical” rod example to begin our tests. A rod is
current shape of the object. The displayed surface is a visual inter-attached to a wall at one end, and bends under gravity, in a damped
face, exhibiting the deformations that take place in the material and media. Figure 9a shows the initial and equilibrium positions. The
hiding the granularity of the model, so that the user is not even aware Lamé coefficient for this rod arg = 5000 andh = 1000000.

of the adaptive granularity. It is also used to detect collisions, and to

transmit external forces to the internal physical model. [ level [ 2 ] 3 [ 4 T adaptive]

Surface representation  The surface display has to be real- | NP Of particles _ 4 32 | 256 4-88
time, and a triangulated surface seems appropriate as most graphics Simulation time (cpu unitsj 0.87 | 4.29 | 38.90 | 5.27
engines use triangles as a primitive. The resolution of the mesh
depends only on the desired visual quality, and can be completely This table shows averaged simulation times for this simulation, us-
separated from the internal discretization. ing different space resolutions. As expected, the adaptive simulation
offers a good trade-off, giving a computational time close to the one
The motion of the mesh nodes is defined with respect to the motion we have with 32 particles (3 levels), while taking advantage of the
of the inner particles. Wink each mesh node with some of the inner  potential 256 simulated particles of level 4. The number of particles
particles, chosen to be te-th closest ones within a given radius  really simulated varies between 4 (beginning of the simulation) and
from the node in the rest position. For each of these links, a constant88 (before stabilization), stabilizing at 32 (as with level 3) when the
offset defined as the vector joining the particle’s rest position and the rod is its rest position (see Figure 9b for reference snapshots of the
mesh node is precomputed. During the animation, the positioin animation)
the node, is determined as a weighted average of its linked particles
positionsp; plus their respective offset. The links’ weightaw; are S
chosen to be inversely proportional to the length ofdheector: .

t=0.195

1 1
n
®)

= Wi(pi+0i) W

2 links iWi Iir;si . I l

igure 9: A'rod oscillating under gravity. (a) reference simulation

Practically, we noticed that a very small number of particles are suf- made with 256 particles. (b) adaptive simulation snapsnots.
ficient to produce convincing animations, which is useful for real-
time applications (we use = 4 currently). This surface motion’s 2 A real-tim lication
smoothing is intended to hide the underlying possible coarse reso-6' eal-time applicatio
lution. The smoothing can be controlled by adjusting the maximum
number of linked particlem, as well as the maximum offset length

- ) rest position
loi] 5

Providing simulators for surgeon-apprentices has several significant
advantages, both ethical and financial: it substitutes for corpses or
(radius of influence of the nOdeS, hence of the partiCIeS). anlmals, and Improves the tralnlng as the surgeons can praCtlce 'aS
Although this model, as the offset is a constant translation, should be MUCh @s they want for the same cost. In the context of laparoscopic
limited to rigid bodies motion or small deformations, it gives con- surgery?, the liver operation is a perfect case to study, being one of
vincing results in practice. We hence avoid the need to use finer the most common operation with this medical technique.
methods, such as the computation at each time step of a local referWe use the simulation technique developed in this paper to imple-
ence frame for each particle, based on its neighbors positions, and inment a laparoscopic surgery simulator. Using volume and surface

which the offset could be defined. data from a typical human liver, we provide a real-time liver simula-
tor, that reacts to surgery tools as displayed on Figure 10. The mul-
Handling multiresolution In our case, the problem is slightly tiresolution nature of our simulation is the key in this context: sim-

more difficult since particles may appear or disappear during the ulation at fixed fine resolution would be overkill. Focusing compu-
simulation. We chose to create a hierarchy of links, a parent particle tations where and when needed using our space-time adaptive tech-
being linked with all its children’s linked nodes. For each of these nique is vital for efficiency. We achieve a 30 Hz simulation using
nodes, the link’s offset is also precomputed from the rest position, an R10K SGI Onyx2, simulating an average of 100 active particles.
and its weight is the sum of its children links’ weights to this node. The frame-rate is constant and guaranteed by a limitation of the com-
During the simulation, active particles are parsed, and each of themputational time, which varies linearly with the number of particles,
gives its weighted position contribution to the nodes it's linked with. weighted by their respective time step level.

The way we computed the links ensures that the surface nodes will

not be affected by a split or a merge of the inner particles as long as it .

takes place when they are at their rest positions. In practice, the pos-7  Conclusions and future work

sible surface popping effect can be controlled by the split and merge ) . ) . o .
thresholds which indirectly determine how far from its rest position e proposed in this paper a multiresolution animation technique
a particle can split/merge, thus determining the maximum surface to animate deformable structured objects. This new computational

visible shift. As a result, surface popping is almost not noticeable in model benefits from an adaptive sampling of both space and time
our tests. to minimize calculations. Based on Hooke’s law, it makes use of

discrete scale-dependent approximation of derivative operators on

Collision detection We use the hardware-based collision detec-
tion described by [LCN99]. An offscreen rendering returns a list 3Laparoscopic surgery is a minimally invasive technique, where surgeons
of the triangles that intersect the tool. Their nodes are then pulled operate using tools that are introduced into the patient's body.



Figure 10: Although the imposed strain sometimes highly exceeds

the small deformations formalism, our model still presents good re-

sponse to the user’s stress. Adding textures highly increase the real-

ism of the simulator.

irregular meshes. Using intuitive criteria, we refine or coarsen au-

[DSB99]

[Fau9s]
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[Fujo5]

[GCD+98]

[GMTT89]

[HPH96]

[LCN99]

[Mil95]
[Mon92]

MT92]

[PW89]

[TF88]

[TG70]

[TPBF87]

[Twss]

tomatically our mass sampling to guarantee an adequate error tolerqyggy

ance.

This approach is very general, and can be easily enhanced. Implicit

integration for instance could suppress all the adaptive time steps[ww9o]
while still guaranteeing stability for applications where little accu-

racy suffices. Better thresholds to control the errors would also be
very useful for more accurate applications. The new discrete differ-

ential operators introduced in this article behave well on a not too
deformed grid and could be enhanced to handle a larger range of
simulations. Multiresolution animation would then become a pow-
erful and efficient tool, like radiosity is, after many improvements
over the last decade.
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