0.1. BASIC CLASSES AND TYPES 1

i
Polynomial Ring & VectorRing

\i
C_matrix o DigitalSequence [Permutation

A A

) Randomized Latin
VectorMatrix TSSequence | Supercube

Figure 1: “Direct use of”-hierarchy

A

In this chapter the author describes the general structure and implemen-
tation details of the library libseq. The library was written using C++. All
mathematical structures are represented as C++ objects. Some of these data
structures are defined by using other objects. This is illustrated by figure 1. It
can be seen, that for example the object RandomizedTSSequence uses directly
objects of the DigitalSequence and Permutation families, but it doesn’t use
the object Ring directly.

For defining all the sequence generators, a small and specialized computer
algebra system was implemented. Most of the complexity is hidden from the
users. With a bit experience in C++ and some knowledge about numerical inte-
gration they are able to use the desired point sets.

The code was written using mostly 32-bit integers. At some points in the
source code it was not possible to avoid using 64-bit integers. The library was
developed under Linux g++, Open BSD g++ and Irix CC. With minor changes it
should also run on different UNIX-platforms.

0.1 Basic Classes and Types

0.1.1 UL_int, LL_int etc. (own _types.h)

For portability and strong typing, we introduce several new integer types in this
package. The new types are declared in the file own_types.h. A short overview
of these types provides the next table.

type | definition | purpose

S_int 16 bit signed integer not used

L_int 32 bit signed integer used in FOR-loops etc.
LL_int 64 bit signed integer not used

US_int 16 bit unsigned integer | used in special situations

UL_int 32 bit unsigned integer | standard data type
ULL_int | 64 bit unsigned integer | used in special situations
R_Elem 32 bit unsigned integer | ring elements

FixPoint | 32 bit unsigned integer | fixed point reals
RVector | 32 bit unsigned integer | small vectors over ring

0.1.1.1 Notes and Examples

Use the function check_own_types() to make sure, that your computer is using
integer types of correct size - and change the definitions if necessary.
Example:

#include "own_types.h"

main()

{
UL_int i; // declare unsigned long integer
R_Elem e; // declare element of a ring
check_own_types(); // general test, if types are OK

}

0.1.2 Class Ring (Ring.h)

The class Ring should hide all internal aspects of an, in our case commutative,
ring (R, +,-). Functions for addition (“+”), additive inverse (“—") and multi-
plication (“-”) are built in as well as more complex ones. You may also find
functions for loading and saving user defined rings via ASCII files from disk.

0.1.2.1 Data Structures and Functions

The neutral elements of (R, +,-) are always (R_Elem)0 and (R_Elem)1. It is
also assumed, that R = {0,1,2,...,¢ — 1}.

e Ring(UL_1INT q)
Constructs the commutative ring Z/qZ.

e Ring(UL_iNT p,UL_INT n)
Constructs the Galois field GF(p™).

e Ring (CHAR* fname)
Constructs the ring specified by fname by loading it from disk.

e R_ELEM add(R_ELEM a , R_ELEM b)
Returns a +pg b. Internally this operation is performed by a lookup from
array _add.

0.1. BASIC CLASSES AND TYPES 3

e R_ELEM mult (R_ELEM a, R_ELEM b)
Returns a-r b. This operation is performed by a lookup from array _mult.

e R_ELEM minus (R_ELEM a)
Returns —ga. This operation is performed by a lookup from the array
_a_inverse.

e R_ELEM invert (R_ELEM a)
Returns a~!. If a—! does not exist in R, the element (R_Elem)O0 is re-
turned. The user is responsible for handling this case. The invert()
function is slow, because the array _mult is scanned for the result. In
average this takes O(|R|/2) operations to perform. It should be easy to
derive a class Field from ring if it is necessary to improve this.

e R_ELEM power (R_ELEM a, L_INT n)
Returns a”, where n € {—23! ... 231 —1}. The algorithm uses fast binary
powering. It takes O(logn) ring operations to compute the result.

e R_ELEM times(R_ELEM a, L_INT n)
Returns n - a. Not implemented. Just copy the function power () and
change mult () to add() and invert () to minus().

e INT abelian(vDiD)
Checks if R is an abelian ring. Not implemented.

e UL_INT memory_used(VOID)
Returns an estimate for the main memory occupied by R in bytes.

® CHAR* query_name (VOID)
Returns a pointer to the ring name, if exists.

e CHAR* query_filename(V0ID)
Returns a pointer to the file name of the ring, if exists.

e voID load(CHAR* fname)
Private function. Load ring data from the file specified by fname.

e voID save(CHAR* fname)
Private function. Save ring data to the file specified by fname.

With load() and save() it is possible to store and create special rings on
disk. The file format is very simple and described in detail in section 0.10.1.
The functions load() and save() are not intended for general usage! They
are for rapid prototyping only. Please don’t use these functions if it is not
really necessary and try to use the constructor Ring(char* fname) instead.
For distinction with future additional construction methods, the string fname
has to start with “FILE:“ for specifying a file on disk. (This is not true for
save().) The characters following “FILE:“ form a normal UNIX-path. Because
the author plans to introduce more algebraic objects, for instance groups, the
internals of this class and the file format are subject to change in future versions.

0.1.2.2 Class VectorRing (VectorRing.h)

The class VectorRing is needed for implementing the optimizations of the gen-
erator DigitalSequence for small bases as described in section . For the users
this object is transparent. Important functions and variables are:

e VectorRing(RING* R, UL_INT t)
Creates the arithmetic of the vector space with ¢ dimensions over R. This
is the direct product of ¢ rings.

o UL_INT base
The base b of ring R.

e UL_INT times
Stores the dimension ¢ of the vector space.

o UL_INT base_pow_times
Stores bt.

e RVECTOR add (RVECTOR va , RVECTOR vb)
Adds two vectors of the vector space.

e RVECTOR mult (R_ELEM s, RVECTOR va)
Multiplies a vector va € R? with a scalar s € R.

e RVECTOR minus (RVECTOR va)
Returns the additive inverse of a vector.

e UL_INT memory_used(voID)
Returns an estimate of the used memory in bytes.

0.1.2.3 Example

#include "Ring.h"

UL_int result;

Ring R(7); /! Z/7z

Ring S("FILE:rings/foo_ring.rng"); // loads ’foo_ring.rng’
// from directory ’rings’

result=R.minus(R.add(3,R.mult(2,4))); // —7(3+7274)
printf ("Result: %d\n",result);

0.1.3 Class Polynomial (Polynomial.h)

This class provides a dirty implementation of the basic algebraic type of poly-
nomials R[X] over a given ring R. The operators *+’ and *’ are overloaded and
some functions will calculate lists of irreducible monic polynomials.

0.1. BASIC CLASSES AND TYPES 5

0.1.3.1 Data and Functions

e Polynomial ()
Empty constructor. Sometimes internally needed.

e Polynomial (RING* R)
Creates the zero polynomial over R.

e POLYNOMIAL operator + (POLYNOMIAL&)
Adds two polynomial over the same ring R.

e POLYNOMIAL operator * (POLYNOMIAL&)
Multiplies two polynomials over the same ring R.

e UL_INT deg
The degree of the polynomial.

e R_ELEM digit [MAX_POLY_LEN]
The coefficients of the monomials.

e UL_INT monic_poly_to_ulong(const POLYNOMIALZ a)
Extern function. Bijection between monic polynomials and integers for
the sieve.

e PoLYNOMIAL ulong_to_monic_poly(const UL_INT n, const RING* R)
Extern function. Inverse function to monic_poly_to_ulong().

e PoLYNOMIAL* first_irr_polynomials(UL_INT n, RING* R)
Extern function. Computes the first n monic, irreducible polynomials over
R[X]. This function uses a sieve for finding the irreducible polynomials.
This algorithm is guaranteed to work only in case if R is an integral
domain!. Adjust TABLE_LENGTH and MAX_POLY_LEN if needed.

e voID print_poly(const POLYNOMIALE P)
Extern function. Outputs the polynomial (for debugging etc.) to screen.

e PoLYNOMIAL one(RING* R)
Extern function. Returns 1 € R[X].

This class is not very beautiful. It is a standard implementation (not even a
very fast one) for dealing with polynomials. These polynomials must have a
fixed maximal degree, which can be specified by changing MAX_POLY_LEN in the
file options.h.

The algorithm for construction of monic irreducible polynomials is a brute
force method, similar to the construction of primes by the sieve of Eratosthenes.

Everything in class Polynomial in this implementation is public. So, every
access to the coefficients digit, or the degree deg has to be direct. This is not
a good solution. Please don’t use this class excessively and wait for a better
solution in a future version of this package! Class Polynomial is only used in
a few member functions of class C_matrix, so these changes should have only a
very local impact.

1Because R is a finite integral domain, it is also a field.

0.1.4 Class C_matrix (C_matrix.h)

For every dimension of digital sequence we have to construct a special generator
matrix. (Or for the whole sequence a three dimensional array.) This array
contains data, which is different for the sequences introduced by I. M. Sobol,
H. Faure or H. Niederreiter. The class C_matrix offers not only access to these
matrices, but it provides also special methods to generate the data or to load it
from a ASCII-file.

0.1.4.1 Data and Functions

e C_matrix(RING* R, CHAR* name, UL INT dim)

Constructor creates a C_matrix specified by the method name in dim di-
mensions with NumDigits chosen big enough to guarantee at least 32 bits
of accuracy. Valid choices for name are “Niederreiter”? and “FILE:unix-
file”. The strings “Sobol” and “Faure” are reserved for future use. Please
note that the constructor will not copy the Ring R. It will store a ref-
erence only. So please don’t delete or change R while a C_matrix is in
use!

e C_matrix(RING* R, CHAR* name, UL INT dim, UL INT NumDigits)
The same as the last constructor, only the user has to specify its own
NumDigits.

e C_matrix(CHAR* filename)
Not implemented in this version. Constructor loads the C_matrix specified
by filename from disk. It also tries to create the ring specified in the file.

e UL INT memory_used(VOID)
Functions returns an estimate for the amount of used memory in bytes.

e R ELEM query(INT dim, INT row, INT column)

. dim-+1
Queries the element c;.™ 11 column-

e VOID set (INT dim, INT row, INT column, R_ELEM val)

dim-+1
Sets the element c."" 11 column:

e R ELEM operator[] (INT)
Internal direct access of elements in the matrix. A range check is per-
formed.

e VOID get_Niederreiter(VOID)
Creates the data for the Niederreiter-C_matrix.

e VOID get_Faure (VOID)
Not implemented in this version.

e VOID get_Sobol(VOID)
Not implemented in this version.

e VOID load (CHAR* fname)
Loads the file specified by frname from disk. As in class Ring, load()
and save() are not for general usage. They are also in an early state of
testing /verification. So please use these functions carefully!

2Please use in this method as ring R only finite fields! (See also class Polynomial.)

0.1. BASIC CLASSES AND TYPES 7

e VOID save (CHAR* fname)
Saves the C_matrix with file name fname to disk.

e CHAR* query_name (VOID)
Returns a pointer to the name of the C_matrix.

e CHAR* query_filename (VOID)
Returns a pointer to the file name of the C_matrix.

0.1.4.2 Class VectorMatrix (VectorMatrix.h)

The class VectorMatrix is needed for implementing the optimizations of the
generator DigitalSequence for small bases as described in section . For the
users this object is transparent. Important functions and variables are:

e VectorMatrix(C_MATRIX* C, UL_INT %)
Transfers the entries of C into the vector space R?.

e RVECTOR query (UL_iNT dim, UL_INT row, UL_INT column)
Queries a value.

e voiD set (UL_INT dim, UL_INT row, UL_INT column , RVECTOR val)
Sets a value.

o UL_INT dimension
The dimension of C.

e UL_INT NumDigits
A copy of the NumDigits of C.

e UL_INT times
Stores the dimension ¢ of the vector space.

o UL_INT NumVectors
Stores the number of vectors, e.g. ceiling(NumDigits/t).
0.1.4.3 Example

#include "Ring.h"
#include "C_matrix.h"

C_matrix *C;
Ring *R;
UL_int akdim,row,column;

R=new Ring(5); /!l R=Z2/57

C=new C_matrix(R,"Niederreiter",dim);

for (akdim=0;akdim<dim;akdim++) // print C to screen
{

for(row=0;row<C->NumDigits;row++)
{

for (column=0; column<C->NumDigits;column++)

printf ("%3d",C->query(akdim,row,column)) ;
printf ("\n");
}
printf ("\n");
¥

C.save("Niederreiter_matrix.dat"); // write matrix to file

0.1.5 Class Permutation (Permutation.h)

Bijections are very basic mathematical objects. Because only bijections between
aset D =1{0,1,...,k— 1} to itself are needed, we restrict our attention to per-
mutations. Often these permutations have to be selected randomly, independent
and equidistributed over S; = Sp, the symmetric group with k! elements. The
class Permutation and its subclasses provide several efficient solutions for this
problem.

0.1.5.1 Class RandomPermutation (Permutation.h)

This class implements random, independent and equidistributed drawn random
permutations.

e RandomPermutation(UL_INT b)
Constructs a permutation from S,. The initial permutation after con-
struction is the identity. To randomize this use operator++().

0.1.5.2 Class VectorRandomPermutation (Permutation.h)

The class VectorRandomPermutation is needed for implementing the optimiza-
tions of the generator DigitalSequence for small bases as described in section
. For the users this object is transparent.

e VectorRandomPermutation(UL_iNT b, UL_INT q)
Constructs ¢ permutations from S,. These permutations are then lifted
to the vector space R?. The initial permutation after construction is the
identity. To randomize this use operator++().

0.1.5.3 Class LazyRandomPermutation (Permutation.h)

The class LazyRandomPermutation is needed for implementing the optimiza-
tions of the generator RandomizedTSSequence for small bases as described in
section . For the users this object is transparent.

e LazyRandomPermutation(UL_INT b)
Constructs a lazy random permutation. This class can be interchanged
with RandomPermutation. The only difference for the user is the time be-
havior. For computing complete permutations this class is slightly slower
than RandomPermutation. But for non-surjective functions a speed-up can
be expected. The initial permutation after construction is the identity. To
randomize this use operator++().

0.1. BASIC CLASSES AND TYPES 9

0.1.5.4 Common Functions

e VOID operator++(voID)
Computes a new permutation. If the class has a Random in its name, then
the permutation after application of this operation is guaranteed to be
random, independent and equidistributed.

e R_ELEM operator[] (UL_INT)
Evaluates the permutation at position 0 < i < b.

e UL_1INT Base(v0o1ID)
If the permutation is from Sp then this function returns b.

e UL_INT memory_used(vVoID)
Returns an estimate for the occupied memory in bytes.

0.1.5.5 Example

Please note, that the class hierarchy of (random) permutations is not perfect and
subject to future changes. The behavior, for instance that the first permutation
after creation is always the identity, and method names, will remain with high
probability.

Example:

#include "Permutation.h"

RandomPermutation RP (10);
LazyRandomPermutation LRP(10);
VectorRandomPermutation VRP(10,2);

for(i=0;i<10;i++) printf ("<%d>",RP[i]);
printf ("\n");

++RP; // choose a new, random permutation
for(i=0;i<10;i++) printf ("<%d>",RP[i]);
printf ("\n");

0.1.6 Class Counter (Counter.h)

This class implements functionality of an b—ary counter. Instances of class
Counter are the heart of classesDigitalSequence_classic,DigitalSequence_-
medium_base and DigitalSequence_advanced. This makes it a very sensitive
object.

The Counter hides the equation

Vi (du(3)) (1)

for 0 <1 < NumDigits = M and 0 < i < b™ from these classes. This formula
is the inner part of equation (27?).

10

0.1.6.1 Data and Functions

Counter (RING* R ,UL_INT NumDigits , RANDOMPERMUTATION** ps%)
Creates a counter over Ring R of NumDigits digits length. The parame-
ter psi allows the user to specify an array of pointers to random permuta-
tions. It is not valid to use VectorRandomPermutations here! The array
psi should have at least NumDigits entries. The counter will then apply
the corresponding permutation to each digit.

Counter (RING* R ,UL_INT NumDigits)
Creates a counter over the ring R of NumDigits digits length. The per-
mutations psi are chosen to be identity.

UL_1INT query(vOoID)
Returns the state of the counter. This does not reflect permutations used!
In future this function might return ULL_int.

voiD set (UL_INT n)

Sets the state of the counter. This doesn’t affect the used permutations.
In future this function might have ULL_int as parameter. Don’t use this
function if you are not exactly sure what you are doing!

VvOoID reset (VoiD)
Resets the counter to the initial state.

VvOoID operator++(voID)
Counts up. This function calls increment_digit (0).

Vvo1D operator--(voID)
Counts down. This function calls decrement_digit (0).

voiIp increment_digit (UL_INT 1)
This function increments the counter starting with digit . The digits 0 to
[— 1 are not affected.

voip decrement_digit (UL_INT 1)
This function decrements the counter starting with digit /. The digits 0
to [— 1 are not affected.

UL_1nT operator[] (UL_1inT 1)
Queries the [-th digit of the counter, | = 0 being the least significant.

UL_inT difference (UL_INT 1)

Returns the difference of the I-th digit in the current state and the I-th
digit of the previous state. The formula for this is ¢;(digiteurrent(l)) —r
Yi(digitprevious(l)). Please compare with formula (??)! This function is
very important for speeding up the digital sequence generators.

UL_1NT memory_used(voID)
Returns an estimate for the occupied memory in bytes.

UL_INT base
Variable stores the base b of the counter.

0.2. CLASS SEQUENCE (SEQUENCE.H) 11

:DigitaISequence: [RandomizedT SSequence] [LatinSupercube] [LatinHypercube] [RandomSequence]

Digital Sequence base 2 Randomized T SSequence
Digital Sequence_classic
Digital Sequence_medium_base / \

[RandomPermutation] [LazyRandomPermutaion] [VectorRandomPermutation]

Figure 2: Inheritance of classes in Sequence.h and Permutation.h

e UL_INT NumDigits
The number of digits of the counter.

e INT LastChangingDigit
The most significant digit that changed during the last operation. This in-
formation is required for most speedup techniques in class DigitalSequence.

0.1.6.2 Notes and Examples

The Counter is a very sensitive object! It is used in class DigitalSequence,
and several implicit assumptions are made. It is possible to change it to a
gray code counter or any other counter - and DigitalSequence_classic will
still work (but DigitalSequence_advanced probably not). But for this it is
essential, that the variable LastChangingDigit and function difference are
in the correct state.

Example:

#include "Ring.h"
#include "Counter.h"

Ring R(7);
Counter N(&R,Number0fDigits);

for(i=0;i<Number0fDigits;i++) printf ("<J%d>",N[i]);
printf ("\n");
// print all digits of the counter

++N; // increment counter
N.decrement_digit(2); // decrement third digit

for(i=0;i<N.LastChangingDigit;i++)
printf ("<%d>",N.difference(i));
// prints the difference to the previous state

0.2 Class Sequence (Sequence.h)

The goal for the development of this package, was to implement methods for
generation of s-dimensional point sets for integration. The class Sequence is

12

an abstract superclass for all of the following classes. It provides functionality,
which can be used by all instances of its subclasses. We describe this function-
ality in here in this section, and omit redundant information in future.

0.2.1 Data and Functions

0.3

DOUBLE operator [] (UL_INT dim)
Returns X %™, The variable n is private and can be manipulated by the
functions operator++() and [random_]restart().

VOID operator++(voID)
Increment n. This switches to the next vector in the sequence. It also sets
7 :=0.

DOUBLE get_next_dim(voIb)
Returns X7 and increments j. This function allows the limited simulation
of the behavior of a scalar random number generator like drand48().

VOID reset_next_dim(voib)
Sets j := 0.

voiD restart (voip)
Sets n := n0, j := 0. The permutations ¢ and 7 remain unchanged. It is
not possible to restart all sequences deterministically.

voIp random_restart (voip)
Sets n := n0, j := 0. The sequence is randomized. It is not possible to
restart every sequence randomly.

UL_1INT memory_used (VoID)
Returns an estimate for the consumed memory in bytes.

UL_INT vector_number (VOID)
Returns n — n0. In most cases n0 = 0. In future versions might return
ULL_int.

CHAR* query_name (VOID)
Returns a pointer to the name of the sequence, if exists.

CHAR* query_filename(V0ID)
Returns a pointer to the file name of the sequence, if exists.

Class RandomSequence (RandomSequence.h)

Class RandomSequence is one of the most basic examples for a specialization of
class Sequence. It implements an abstract view to the drand48() generator.

RandomSequence (UL_INT dzm)
Constructs a sequence of random vectors. Internally drand48() is used.

RandomSequence (UL_INT dim, UL_INT len)

Constructs a sequence of random vectors. Internally drand48() is used.
The first len vectors of the sequence are stored in an array to allow a
deterministic restart ().

0.4. CLASS LATINHYPERCUBE (LATINHYPERCUBE.H) 13

e voiD random_restart(voip)
This function should restart the generator randomly, equidistributed and
independent.

e vOoID restart(voiD)
In case that the second constructor was used, it is possible to determinis-
tically restart the sequence.

The following example shows how to solve with help of the Monte Carlo method

the integral
dim—1

idX.
\/[O,l)dim ZE([) T

#include "RandomSequence.h"
double f(Sequence *X)

{
int i;
double tmp=1.0;
for(i=0;i<X->query_dimension() ;i++) tmp=tmp*X[i];
return tmp;
}
RandomSequence X(dim) ;
double sum=0.0;
int N=1000;
for(i=0;i<N;i++)
{

sum=sum+f (X) ; // evaluate f at X
++(*X) ; // mnext vector in sequence
}

printf (“Estimate for integral is %e\n’’,sum/N);

0.4 Class LatinHypercube (LatinHypercube.h)

Class LatinHypercube can be used in most cases in exchange for RandomSequence.
One important difference is, that this sequence has a fixed number of vectors,
which has to be specified in the constructor. The points generated are stratified.
This reduces the variance in some cases significantly.

e LatinHypercube (UL_INT di<m, UL_INT len)
Constructs a Latin hypercube sample of dimension dim and length len.

e voID random_restart(voIp)
This function restarts with a new random, independent and equidistributed
Latin hypercube.

e VOID restart(voibp)
This function is not intended to work in this class.

14

0.5 Class HaltonSequence (HaltonSequence.h)

This class was originally written by Alexander Keller and adapted for this pack-
age by the author. It will generate the low discrepancy sequence introduced by
Halton in [?]. No randomizing is offered in this version, so random_restart ()
will not work.

e HaltonSequence (UL_iNT dZm, UL_INT n0=0, INT *#Primes = NULL)
Creates a Halton sequence of dimension dim, starting at n0 with the
primes in Primes[dim] as bases. The default for n0 = 0 and for Primes
the first dim prime numbers in IN.

e v0ID random_restart (voiD)
This function is not intended to work within this class.

e vOID restart(voip)
This function deterministically restarts the specified Halton sequence.

0.6 Class DigitalSequence (DigitalSequence.h)

This is the base class for several different implementations of speedup techniques
for constructing digital (¢, s)-sequences over a ring R.

e DigitalSequence (UL_INT dim)
This constructor forwards the dimension dim to class Sequence.

0.6.1 Class DigitalSequence_classic (DigitalSequence.h)

This class shows the traditional® approach for constructing digital (¢, s)-sequences.
It is a reference implementation only and is most likely not maintained in future
by the author.

e DigitalSequence_classic(C_MATRIX* C, UL_INT dim, UL_INT n0)
Creates a digital (¢, s)—sequence with the given C_matrix C, dimension
dim and counter starting at n0. Permutations ¢ and 7 are chosen as
identity. The dimension dim cannot be larger than the dimension of the
C_matrix.

e DigitalSequence_classic(C_MATRIX* C, UL_INT dim)
Creates a digital (¢, s)—sequence with counter starting at zero.

e DigitalSequence_classic(C_MATRIX* (')
Creates a digital (¢, s)—sequence with dimension assumed the same as in
C_matrix.

e voID random_restart (vVoiD)
Restarts the sequence at n0 and chooses new random permutations.

e vOID restart(voip)
Restarts the sequence deterministically at n0.

3The word traditional is missleading, because the traditional technique is the use of a Gray
code counter. Naive would describe the technique better, but now the word is coined.

0.6. CLASS DIGITALSEQUENCE (DIGITALSEQUENCE.H) 15

0.6.2 Class DigitalSequence_medium_base

(DigitalSequence.h)

This class illustrates one of the buffering techniques which are used in class
DigitalSequence_advanced. It is a reference implementation only and is most
likely not maintained in future by the author.

DigitalSequence_medium_base(C_MATRIX* C, UL_INT dim, UL_INT n0)
Creates a digital (¢, s)—sequence with the given C_matrix C, dimension
dim and counter starting at n0. Permutations ¢y and 7 are chosen as
identity. The dimension dim cannot be larger than the dimension of the
C_matrix.

DigitalSequence_medium_base(C_MATRIX* C, UL_INT dim)
Creates a digital (¢, s)—sequence with counter starting at zero.

DigitalSequence_medium_base(C_MATRIX* C)
Creates a digital (¢,s)—sequence with dimension assumed the same as in
C_matrix.

voIDp random_restart (voip)
Restarts the sequence at n0 and chooses new random permutations.

vOo1ID restart (voip)
Restarts the sequence deterministically at n0.

0.6.3 Class DigitalSequence_advanced

(DigitalSequence.h)

This class provides the fastest implementation of this package for long sequences.
The running time for short sequences should be similar to the other two tech-
niques. This is the class most users want to use for bases b > 3.

DigitalSequence_advanced (C_MATRIX* C, UL_INT dim, UL_INT n0)
Creates a digital (¢, s)—sequence with the given C_matrix C , dimension
dim and counter starting at n0. Permutations i) and 7 are chosen as
identity. The dimension dim cannot be larger than the dimension of the
C_matrix.

DigitalSequence_advanced (C_MATRIX* C, UL_INT dim)
Creates a digital (¢, s)—sequence with counter starting at zero.

DigitalSequence_advanced (C_MATRIX* ()
Creates a digital (¢,s)—sequence with dimension assumed the same as in
C_matrix.

voIDp random_restart(voip)
Restarts the sequence at n0 and chooses new random permutations.

voID restart (voiD)
Restarts the sequence deterministically at n0.

16

0.6.4 Class DigitalSequence_base_2 (DigitalSequence.h)

This class provides an efficient implementation for digital (¢, s)-sequence of base
b=2.

e DigitalSequence_base_2(C_MATRIX* C, UL_INT dim, UL_INT n0)
Creates a digital (¢, s)—sequence with the given C_matrix C, dimension
dim and counter starting at n0. Permutations ¢ and 7 are chosen as
identity. The dimension dim cannot be larger than the dimension of the
C_matrix.

e DigitalSequence_base_2(C_MATRIX* C, UL_INT dim)
Creates a digital (¢, s)—sequence with counter starting at zero.

e DigitalSequence_base_2(C_MATRIX* C)
Creates a digital (¢, s)—sequence with dimension assumed the same as in
C_matrix.

e FIxPoINT query_bitmap (UL_INT dzm)

Returns the sequence as fixed point reals, e.g. 232

-operator [] (dim).
e voID random_restart(voiD)
Restarts the sequence at n0 and chooses new random permutations.

e vOID restart(voID)
Restarts the sequence deterministically at n0.

e voiID calc_vector (UL_INT %)
Directly computes the vector X; of the sequence, where 0 < i < 232. This
is slow and should not be used without a good reason.

e voID transfer_C(voID)
Private function. The content of the C_matrix is copied into an internal
format.

0.6.5 Notes and Examples

The constructor will not copy the Ring R nor C_matrix C. It will store a
reference only. So please be careful when deleting R or C! No function of
DigitalSequence will change R or C. So it is possible to reuse the ring and
the matrix for further sequences.

Example:

#include "Ring.h"
#include "C_matrix.h"
#include "DigitalSequence.h"

Ring *R;
C_matrix *C;
Sequence *Y;

R=new Ring(5);
C=new C_matrix(R,"Niederreiter",4);

0.7. CLASS RANDOMIZEDTSSEQUENCE (RANDOMIZEDTSSEQUENCE.H) 17

Y=new DigitalSequence_advanced(C) ;
++(*Y) ;

delete(Y);
delete(C);
delete(R);

R=new Ring(2);
C=new C_matrix(R,"Niederreiter",8);
Y=new DigitalSequence_base_2(C);

0.7 Class RandomizedTSSequence
(RandomizedTSSequence.h)

This class implements the randomization of (¢, s)-sequences suggested by Owen
as described in section . The input to this class should be a class (t,s)-sequence.
But this is not realized here. Internally a digital sequence is created, which is
then randomized.

0.7.1 Functions

e RandomizedTSSequence(C_MATRIX* C, UL_INT dim, UL_INT len,

UL_1inT LSS_flag)

Creates a randomized (t, s)-sequence of dimension dim and length len.
For that a DigitalSequence over the matrix C is constructed. If the
LSS _flag is set, then the order of the vectors in the sequence is random-
ized. This is helpful for constructing Latin supercube samples. In most
cases the users should use a length len = b* which is a power of the used
base.

e RandomizedTSSequence(C_MATRIX* ¢, UL_INT dim, UL_INT len)
The same as last constructor with LSS_flag = 0.

e RandomizedTSSequence(C_MATRIX* C, UL_INT len)
The same as last constructor with dimension dim taken from C.

e vOID random_restart(voib)
Creates a random, independent and equidistributed version of the se-
quence. This function is basically a call to randomize_sequence().

e vOID restart (voip)
Deterministically restarts the sequence.

o FIXPOINT** Seq
The sequence is stored in Seq[dim][len] as fixed point integers.

o UL_INT** P
The array P[dim][len] is used to store the sorting permutation. In function
apply_permutation_for_latin_supercube() pointers Seq[i] and Plj]

18

are exchanged and the memory is used to store each others data. Thats
why Seq and P must have the same type and size on the binary level.

UNSIGNED CHAR** ChangingDigit

The array ChangingDigit[dim][len + 1] is exactly the d[i] in algorithm
??. As infinity symbol (uns1GNED cHAR)O is used. For the used algorithm
ChangingDigit[i][len] := 0. This will guarantee to terminate a while-loop.

vOoID sort_sequence_and_generate_permutation(voip)
Private function. It sorts every Seq[i] to Seqnew[i] and creates permuta-
tions in P[i] such that Seqyq[i|[j] = Seqnew|t][PE][]]-

voibp fixed_point_to_digits (FIXPoOINT fp, UL_INT b, UL_INT* p)
Private function. It converts the fixed point number fp to its radix b
representation in p. The array p should be at least of length 33. The
number of digits of p is stored in p[0]. Rounding errors may appear.

FixPoinT digits_to_fixed_point (UL_INT b, UL_INT* p)
Private function. It converts the radix b representation of a fixed point
number to the 32 bit binary representation. Rounding errors may appear.

voID stochastic_quicksort (UL_INT di<m, UL_INT p, UL_INT)
Private function. It sorts Seq and keeps track of P.

voID apply_permutation_for_latin_supercube(voID)
Private function. Randomizes the order of all vectors of the sequence. The
same random permutation is applied to all dimensions.

vo1b calc_changing_digits(voIbp)
Private function. After sorting the sequence this function will compute
the data in ChangingDigit.

voIb randomize_sequence (VOID)
Private function. Does main job for randomizing the sequence.

RandomizedTSSequence (UL_INT dim)
Don’t use this function. It is used by class RandomizedTSSequence_base_2
and forwards the dimension to class Sequence.

0.7.2 Class RandomizedTSSequence_base_2

(RandomizedTSSequence.h)

This class provides an efficient implementation for randomizing digital (¢, s)-
sequence of base b = 2 as suggested by Owen.

0.7.2.1 Functions

e RandomizedTSSequence_base_2(C_MATRIX* C, UL_INT dim,

UL_inT len, UL_INT LSS_flag)

Creates a randomized (¢, s)-sequence of dimension dim and length len and
base b = 2. For that a DigitalSequence_base_2 over the matrix C is
constructed. If the LSS _flag is set, then the order of the vectors in the
sequence is randomized. This is helpful for constructing Latin supercube

0.8. CLASS LATINSUPERCUBE (LATINSUPERCUBE.H) 19

samples. In most cases the users should use a length len = 2* which is a
power of two.

e RandomizedTSSequence_base_2(C_MATRIX* (', UL_INT d2m, UL_INT len)
The same as last constructor with LSS_flag = 0.

e RandomizedTSSequence_base_2(C_MATRIX* C, UL_INT len)
The same as last constructor with dimension dim taken from C.

e voID calc_changing_digits(voib)
Private function. This is a version specialized for base b = 2.

e voID randomize_sequence(V0OID)
Private function. This is a version specialized for base b = 2.

e vOID random_restart(vVoID)
Creates a random, independent and equidistributed version of the se-
quence.

e vOID restart(voip)
Deterministically restarts the sequence. This function is derived from the
base class.

0.7.2.2 Notes and Examples

The constructor will not copy the Ring R nor C_matrix C. It will store a
reference only. So please be careful when deleting R or C! No function of
DigitalSequence will change R or C. So it is possible to reuse them for other
sequences.

Example:

#include "Ring.h"
#include "C_matrix.h"
#include "RandomizedTSSequence.h"

Ring *R;
C_matrix *C;
Sequence *X;

R=new Ring(5);
C=new C_matrix(R,"Niederreiter",8,5);

// 8 dimensions, 5 digits accuracy
X=new RandomizedTSSequence(C,125);

// first 125 vectors of the sequence

0.8 Class LatinSupercube (LatinSupercube.h)
This class implements Owen’s Latin supercube randomization of randomized

(t, s)-sequences as described in section . It is a very simple class, not much
more then a convenient macro for using RandomizedTSSequence.

20

0.8.1 Functions

LatinSupercube (C_MATRIX* €, UL_INT d<m, UL_INT* LD , UL_INT len)
Constructs a Latin supercube made of RandomizedTSSequences. For that
the array LD specifies, how big the sub-dimensions are. It is required, that
Y. LD[i] = dim. There is no variable specifying the size of array LD.

LatinSupercube (C_MATRIX* (', UL_INT diml , UL_INT d2m2, UL_INT len)

Constructs a Latin supercube made of two RandomizedTSSequences with
dimensions dim1 and dim2. There are also similar constructors with more
sub-dimensions.

voIp random_restart (voip)
Creates a random, independent and equidistributed version of the se-
quence.

voID restart (voip)
Deterministically restarts the sequence.

RANDOMIZEDTSSEQUENCE** GenList
The array GenList stores a pointer to a RandomizedTSSequence generator
for every sub-dimension.

UL_INT* gen_at_dim

The array gen_at_dim[dim] stores for every 0 < ¢ < dim an index to
the generator in GenList. This indirection is not necessary and might be
removed in next version.

UL_INT* LocalDim
The array Local Dim[dim] stores the local- or sub-dimension Local Dim]i)
for the generator at dimension gen_at_dimli].

0.9 Other Files

0.9.1 digit gen.h

This file hides all calls to the random number generator drand48(). This makes
it possible to exchange all calls to random number generators easily. It also
provides an efficient way to introduce some kind of statistics and count the
number of calls.

DOUBLE drand47 ()
Returns a random real number 0.0 < r < 1.0. The number r should have
at least 32 leading random bits.

R_ELEM random_Ring_Element (UL_INT base)
Returns a random ring element 0 < re < base.

UL_1INT get_31_random_bits()
Returns an unsigned long integer. This integer consists of 32 bits. The
highest bit should be zero and all other bits are random.

0.9. OTHER FILES 21

UL_1nT get_32_random_bits()
Returns an unsigned long integer. This integer consists of 32 random bits.

vo1D random_seed_for_drand48()
Sets the used random number generator to a new state. Here the system
time is taken to perform this. This function is not used inside of libseq.

0.9.2 options.h

In this file the user will find all options as #defines. So all changes can be made
on a single point.

#define MAX_POLY_LEN 128
The polynomials used have fixed maximal degree. The constant 128 should
be safe for all applications.

#define TABLE_LENGTH 1000

Defines the size of the table used in the sieve for finding monic irreducible
polynomials. This number should be increased if dimension of the digital
sequence is large.

#define EPSILON Ze-20
Not implemented in this version. Defines a small positive number.

#define MAX_BUFFER_LEN 100
Defines the maximum size of the buffers in DigitalSequence_medium_base
and DigitalSequence_advanced.

#define USE_DRAND4S8 1
Not implemented in this version. Specifies, if the random number gener-
ator drand48() should be used in digit_gen.h.

#define DEBUG
Several runtime checks are made and informations printed to screen id flag
is set. Try this flag if you suspect the library or your program is broken.

##define RTSS_TEST
Additional tests in RandomizedTSSequence. Don’t use this flag.

#define DESTRUCTOR
Several destructors will output there names on screen if flag is set.

#define RETURN_NO_NULLS
Not implemented in this version. If flag is set, no generator will ever return
a zero. Instead EPSILON is returned.

#define WARNINGS_TO_SCREEN
Not implemented in this version. If flag is set, the library will output
warnings to the screen.

#define WARNINGS_TO_FILE
Not implemented in this version. If flag is set, the library will output
warnings to a file.

#define WARNINGS_FILE "/tmp/libseq_warning.tzt"
Not implemented in this version. File name for WARNINGS_TO_FILE.

22

0.10 Implementing additional Digital Sequences

For constructing new digital sequences with different C_matrizx, it is possible to
go several ways. For permanent usage a function similar to get_Niederreiter ()
should be implemented. Whereas for experiments with new methods simply a
*.cmx file with tools from outside of this library could be created and then
loaded into a C_matrix.

0.10.1 Format of the *.rng and *.cmx Files

It is possible to save Ring and C_matrix files in an ASCII file to disk and load
them again. This is useful for experiments with new algebraic objects.

The file format is very simple. Lines with a leading hash # are ignored as
well as empty lines. All important variables and data structures of these objects
are stored in the files. A BNF for the syntax wasn’t defined yet. Nevertheless
the syntax is easily understood, as the next subsection shows.

0.10.1.1 Examples
The ring Z/57Z is saved as:

RING

[abelian] ring, generated by Ring::save(’Ring.rng’)
Ring has 5 elements

Zero is ’0’ and One is ’1’

NAME Z/qZ

METHOD O

CARD 5

ADD

012 3 4 END_LINE
12 3 4 0 END_LINE
2 340 1 END_LINE
3401 2 END_LINE
4012 3 END_LINE
END_ADD

MULT

00000 END_LINE
012 3 4 END_LINE
0241 3 END_LINE
0 314 2 END_LINE
0 4 3 2 1 END_LINE
END_MULT

END_RING

The C_matrix(Z/57Z ,”Niederreiter’’,2,4) is saved as:

C_MATRIX
C_MATRIX_NAME Niederreiter

0.10. IMPLEMENTING ADDITIONAL DIGITAL SEQUENCES

C_MATRIX_RING_NAME Z/qZ
C_MATRIX_RING_CARD 5
DIGIT_ACCURACY 4
MAX_DIMENSION 2

The indices of the following arrays are
horizontal is 1

vertical is r

Please compare with the documentation
or Niederreiter’92

DIMENSION O
1 0 0 0 END_LINE

01 0 O END_LINE
0 01 0 END_LINE
0 0 0 1 END_LINE
END_DIMENSION

DIMENSION 1
141 4 END_LINE

0 1 3 3 END_LINE
0 0 1 2 END_LINE
0 0 0 1 END_LINE
END_DIMENSION

END_C_MATRIX

23

