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Abstract

Specifying the motion of an animated linked figure such that it achieves given tasks (e.g., throwing a ball into a
basket) and performs the tasks in a realistic fashion (e.g., gracefully, and following physical laws such as gravity) has
been an elusive goal for computer animators. The spacetime constraints paradigm has been shown to be a valuable
approach to this problem, but it suffers from computational complexity growth as creatures and tasks approach those
one would like to animate. The complexity is shown to be, in part, due to the choice of finite basis with which to
represent the trajectories of the generalized degrees of freedom.

The functions through time of the generalized degrees of freedom are reformulated in a hierarchical wavelet
representation. This provides a means to automatically add detailed motion only where it is required, thus minimizing
the number of discrete variables. In addition the wavelet basis is shown to lead to better conditioned systems of
equations and thus faster convergence.

1 Introduction

The spacetime constraint method, proposed in 1988 by Witkin and Kass [36], and extended by Cohen [7], has been
shown to be a useful technique for creating physically based and goal directed motion of linked figures. The basic
idea of this approach can be illustrated with a three-link arm and a ball (see Figure 4). The problem statement begins
with specifying constraints, examples being specifying the position of the arm at a given time, requiring the ball to be
in the hand (end effector) at time t0, and that the arm is to throw the ball at time t1 to land in a basket at time t2. In
addition, the animator must specify an objective function, such as to perform the tasks specified by the constraints with
minimum energy or some other style consideration. The solution to such a series of specifications is a set of functions
through time (or trajectories) of each degree of freedom (DOF), which in this case are the joint angles of the arm.
Thus the unknowns span both space (the joint angles) and time, and have led to the term spacetime constraints.

Related approaches to the spacetime constraint paradigm are reported in [34, 25]. In each of these papers, feedback
control strategies are the fundamental unknown functions rather than DOF trajectories. The goal is set, for example,
for the creature to move in some direction as far as possible in 10 seconds, and a score for a particular motion is
defined as the distance traveled. An initial control strategy is selected, a dynamic simulation is run and the results are
scored. Iterations change the control strategy, as opposed the motion curves, producing a simulation that, hopefully,
has a higher score. The results of these studies are encouraging, however, they are distinctly different from that in the
previous spacetime constraint work (and the work described in this paper) in which the aim is to provide the animator
with the overall control of the motion.

The spacetime constraint formulation leads to a non-linear constrained variational problem, that in general, has
no closed form solution. In practice, the solution is carried out by reducing the space of possible trajectories to
those representable by a linear combination of basis functions such as cubic B-splines. Finding the finite number of
coefficients for the B-splines involves solving the related constrained optimization problem,(i.e., finding the coefficients
to create motion curves for the DOF that minimize the objective while satisfying the constraints). Unfortunately, general
solutions to such a non-linear optimization problem are also unknown.

Based on this observation, Cohen developed an interactive spacetime control system using hybrid symbolic and
numeric processing techniques [7]. In this system, the user can interact with the iterative numerical optimization and
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Figure 4: A planar three-link arm.

can guide the optimization process to converge to an acceptable solution. One can also focus attention on subsets or
windows in spacetime. This system produces physically based and goal directed motions, but it still suffers from a
number of computational difficulties, most notably as the complexity of the creature or animation increases.

An important difficulty in the spacetime system is that the user is required to choose the discretization of the
B-spline curves. If not enough control points are selected, there may be no feasible solution (i.e., one that meets
all constraints), or the restriction to the curve is so severe, that the resulting motion curves have a much higher
objective cost than necessary. If too many control points are selected, then the computational complexity is increased
unnecessarily due to the larger number of unknowns as well as the resulting ill-conditioning of the linear subproblems
that arise in the solution [32]. This complexity issue is addressed by reformulating the DOF functions in a hierarchical
basis, in particular, in a B-spline wavelet (B-wavelet) basis. Wavelets provide a natural and elegant means to include
the proper amount of local detail in regions of spacetime that require the extra subdivision without overburdening the
computation as a whole.

2 System overview

The interactive spacetime control system is shown in Figure 5. Input to the system includes user defined constraints
and objectives and a creature description from which the symbolic equations of motion are generated automatically.
The equations of motion define the torque at each joint as a function of the position and velocity of all joints as well
as physical properties such as mass and length of the links. These expressions for torque are central to the definition
of a minimum energy objective. The expressions are next symbolically differentiated and compiled to create concise
evaluation trees.

The main focus of the current discussion is on the next section, the numerical process that solves for the coefficients
of the chosen B-spline or hierarchical wavelet basis. Finally, the intermediate and final animations are displayed
graphically. The animator can simply watch the progress of the optimization procedure or can interact directly with
the optimization by creating starting motion curves for the DOF and/or by modifying intermediate solutions.

3 Wavelets

An elegant and concise hierarchical basis, and one that leads naturally to an adaptive basis, is offered by a wavelet
construction. This section concentrates on the advantages of wavelets and wavelet formulations in the spacetime
animation problem.
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Figure 5: The Hierarchical Spacetime Constraints System. This paper focuses on the Symbolic Differentiation and
Optimizing Equation Compiler, and the Numerical Optimization System

The wavelet construction results in a non-redundant basis that provides the means to begin with a low resolution
basis and then adaptively refine the representation layer by layer when necessary without changing the representation
above. If refinements are required in only part of the interval, then only those coefficients whose bases have support
in this region need to be added.

Since the wavelet coefficients encode differences, in smooth portions of the trajectory the coefficients encoding
finer scale detail will be zero. Thus, only those basis functions with resulting coefficients greater than some � will
have a significant influence on the curve and the rest can be ignored. In other words, given an oracle function [15, 14],
that can predict which coefficients will be above a threshold, only the corresponding subset of wavelets needs to be
included.

Solutions to the non-linear spacetime problem, involve a series of quadratic subproblems for which the compu-
tational complexity depends on the number of unknown coefficients. The smaller number of significant unknown
coefficients in the wavelet basis provide faster iterations. In addition, the wavelet basis provides a better conditioned
system of equations than the uniform B-spline basis, and thus requires less iterations. The intuition for this lies in the
fact that there is no single basis in the original B-spline basis that provides a global estimate of the final trajectory
(i.e., the locality of the B-spline basis is, in this case, a detriment). Thus, if the constraints and objective do not
cause interactions across points in time, then information about changes in one coefficient travels very slowly (inO(n)
iterations) to other parts of the trajectory. In contrast, the hierarchical wavelet basis provides a shorter (O(log(n)))
“communication” distance between any two basis functions. This is the basic insight leading to multigrid methods
[32], and the related hierarchical methods discussed here.

The wavelet representation also allows the user to easily lock in the coarser level solution and only work on details
simply by removing the coarser level basis functions from the optimization. This provides the means to create small
systems that solve very rapidly to develop the finest details in the trajectories.

3.1 B-wavelets

In the literature, there are many wavelet constructions, each with its own particular functions � an  , with varying
degrees of orthogonality, compactness, and smoothness. The particular wavelet construction used in this work are
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derived in [5], and were chosen because of the semi-orthogonality of the basis, the associated � is a cubic B-spline
(i.e., C2), and the wavelet function  is symmetric with compact support.

3.2 Wavelets on the Interval

In a classical wavelet construction, the domain goes from �1 : : :1. In an animation context, only functions over
some fixed finite interval of time need to be expressed, and it is important to only deal with a finite number of basis
functions. Therefore, the function space VL used here is defined to be the space of all C2 functions defined over the
interval [0 : : : 2L] that are piecewise cubic between adjacent integers (simple knots at the inner integers and quadruple
knots at the boundaries). A basis for VL is made up of inner basis functions, which are just those translational B-spline
basis functions �L;j whose support lies completely within the interval, as well as three special boundary B-spline
basis functions at each end of the interval. For the boundary basis functions, one may either choose to include the
translational basis functions �L;j themselves whose support intersects the boundaries by just truncating those basis
functions at the boundary, or else one may use the special boundary basis functions that arise from placing quadruple
knots at the boundaries [2]. This complete set of basis functions will be denoted �L;j with j in f�3 : : :2L� 1g, where
it is understood that the first and last three basis functions are the special boundary B-spline basis functions.

A two-part basis for VL can be constructed with the wider B-spline functions �L�1;j with j in f�3 : : :2L�1 � 1g
where again the first and last three basis functions are scaled versions of the special boundary B-splines functions.
The two-part basis is completed with the wavelet functions  L�1;j with j in f�3 : : :2L�1 � 4g. Here too, the inner
wavelet basis functions are just those translational functions L�1;j that do not intersect the boundaries, while the first
three and the last three interval wavelet basis functions must be specially designed to fit in the interval and still be
orthogonal to the �L�1;j . A full description of this construction is given in [4, 28].

3.3 Completing the Wavelet Basis

The reasoning that was used to construct the two-part basis can now be applied recursively L� 3 times to construct a
multilevel wavelet basis. Noting that roughly half of the basis functions in the two-part basis are themselves B-spline
basis functions (only twice as wide), to continue the wavelet construction, keep the basis functions  L�1;j and re
cursivelyapply the reasoning above to replace the �i;j with f�i�1;j ;  i�2;jg.

Each time this reasoning is applied, the number of B-spline functions in the hierarchical basis is cut in half (roughly),
and the new basis functions become twice as wide. After L� 3 applications, the wavelet basis

f�3;k;  i;jg (6)

is obtained, with i in f3 : : : L�1g, k in f�3 : : : 7g and j in f�3 : : :2i�4g, where the inner basis functions are defined
by

�i;j(t) = �(2(i�L)t� j)

 i;j(t) =  (2(i�L)t� j) (7)

This basis is made up of eleven wide B-splines, and translations (index j) and scales (index i) of the wavelet shape (as
well as scales of the boundary wavelet basis functions).

The wavelet basis is an alternate basis for VL, but unlike the B-spline basis, it is an L� 3 level hierarchical basis.
At level 3 there are eleven broad B-splines, and eight broad wavelets. These basis functions give the coarse description
of the function. At each subsequent level going from level 3 to L� 1, the basis includes twice as many wavelets, and
these wavelets are twice as narrow as the ones on the previous level. Each level successively adds more degrees of
detail to the function.

Since each wavelet coefficients represents the amount of local detail of a particular scale, if the function is sufficiently
smooth in some region, then very few non-zero wavelet coefficients will be required in that region4.

4In this case, non-zero can be defined to be having an absolute value greater than some epsilon without incurring significant error in the
representation.
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3.4 Scaling

One final issue is the scaling ratio between the basis functions. Traditionally [5] the wavelet functions are defined with
the following scaling:

�i;j(t) = 2(i�L)=2 �(2(i�L)t� j)

 i;j(t) = 2(i�L)=2  (2(i�L)t� j) (8)

This means that at each level up, the basis functions become twice as wide, and are scaled 1p
2

times as tall.
While in many contexts this normalizing may be desirable, for optimization purposes it is counter productive. For the
optimization procedure to be well conditioned [8] it is advantageous to emphasize the coarser levels and hence use the
scaling defined by

�i;j(t) = 2L�i �(2(i�L)t� j)

 i;j(t) = 2L�i  (2(i�L)t� j) (9)

where the wider functions are also taller.

4 Implementation

The input to the wavelet spacetime problem includes the creature description, the objective function (i.e., symbolic
expressions of joint torques generated from the creature description), and user defined constraints specifying desired
actions (throw, catch, etc.), and inequality constraints such as joint limits on the elbow.

Each trajectory of a DOF, �(t), is represented in the uniform cubic B-spline basis. The unknowns are then the
B-spline coefficients, b, or the equivalent wavelet coefficients, c, scaling the individual basis functions. This finite
set of coefficients provide the information to evaluate the �(t), ˙�(t), and ¨�(t) at any time t, that comprise the leaves
of the DAGs. This finite representation transforms the variational problem into a constrained non-linear optimization
problem. An unconstrained problem can then be derived by penalizing violations to the constraints.

A quasi-Newton method, BFGS [10], is used to solve the resulting non-linear problem. Iterations begin with a user
provided initial guess of wavelet coefficients (that can be derived from B-spline coefficients) and a guess of the inverse
of the Hessian (usually an identity matrix leading to the first iteration being a simple gradient descent).

Each subsequent iteration involves finding the gradient of the modified constraint/objective function and performing
a matrix-vector multiply. The newly obtained solution is then transformed into B-spline coefficients and sent to the
graphical user interface for display.

If the initial function space is restricted to a coarse representation consisting of the broad B-splines and a single
level of wavelets, after each iteration a simple oracle function adds wavelets at finer levels only when the wavelet
coefficient above exceeds some tolerance. This procedure quickly approximates the optimal trajectory and smoothly
converges to a final answer with sufficient detail in those regions that require it.

An important feature of the system discussed in [7] is also available in the current implementation. The user can
directly modify the current solution with a simple key frame system to help guide the numerical process. This is
critical to allow the user, for example, to move the solution from an underhand to an overhand throw, both of which
represent local minima in the same optimization problem. The next iteration then begins with these new trajectories
as the current guess.

5 Results

A set of experiments was run on the problem of a three-link arm and a ball (see Figure 4). The goal of the arm is to
begin and end in a rest position hanging straight down, and to throw the ball into a basket. The objective function is
to minimize energy, where energy is defined as the integral of the sum of the squares of the joint torques. Gravity is
active.
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Figure 6: Convergence of Arm and Ball example for 4 different starting trajectories. The first and fourth examples
resulted in underhand throws, and the rest overhand. Time is in seconds, and the cost is a weighted sum of constraint
violations and energy above the local minimum.

The four graphs in Figure 6 show the convergence of five different test runs of the arm and ball example. Each
plot differs only in the starting trajectories of the arm DOF. Each run converged to either an underhand or overhand
throw into the basket. The full B-spline basis contained 67 basis functions for each of the three DOF, thus there were
201 unknown coefficients to solve for. Iterations took approximately 7 seconds each on an SGI workstation with an
R4000 processor. Convergence was achieved on each, but only after many iterations due to the ill-conditioning of the
B-spline formulation.

The full wavelet basis also contained 67 basis function per DOF (11 B-splines at the top level and 56 wavelets
below), thus iterations also took approximately the same 7 seconds. Figure 6 clearly shows the improved convergence
rates of the wavelet formulations over the B-spline basis, due to better conditioned linear systems. The adaptive wavelet
method with the oracle was the fastest since the number of unknowns was small in early iterations, leading to a very
fast approximation of the final trajectories, in addition to the better conditioning provided by the hierarchical basis.
The final few iterations involved more wavelets inserted by the oracle to complete the process. Note that in each case,
a good approximation to the complete animation was achieved in less than a minute of computation.

6 Conclusion

The spacetime constraint system first suggested by Witkin and Kass [36] for animating linked figures has been shown
to be an effective means of generating goal based motion. Cohen enhanced this work by demonstrating how to focus
the optimization step on windows of spacetime and methodologies to keep the user in the optimization loop. These
notes discuss extentions to this paradigm by removing two major difficulties.

A major improvement lies in the representation of the trajectories of the DOF in a wavelet basis. This resulted in
faster optimization iterations due to less unknown coefficients needed in smooth regions of the trajectory. In addition,
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even with the same number of coefficients, the systems become better conditioned and thus less iterations are required
to settle to a local minimum. Results are shown for a planar three-link arm.

Acknowledgements

The authors owe a debt to Charles Rose who implemented the user interface for this work. This research was supported
in part by the National Science Foundation, Grant CCR-9296146.

References

[1] BARTELS, R., AND BEATTY, J. A technique for the direct manipulation of spline curves. In Graphics Interface 1989 (1989),
pp. 33–39.

[2] BARTELS, R., BEATTY, J., AND BARSKY, B. An Introduction to Splines for Use in Computer Graphics and Modeling. Morgan
Kaufmann, 1987.

[3] CELNIKER, G., AND GOSSARD, D. Deformable curve and surface finite-elements for free-from shape design. Computer
Graphics 25, 4 (July 1991), 257–266.

[4] CHUI, C., AND QUAK, E. Wavelets on a bounded interval. Numerical Methods of Approximation Theory 9 (1992), 53–75.

[5] CHUI, C. K. An Introduction to Wavelets, vol. 1 of Wavelet Analysis and its Applications. Academic Press Inc., 1992.

[6] COHEN, A., DAUBECHIES, I., AND FEAUVEAU, J. C. Biorthogonal bases of compactly supported wavelets. Communication on
Pure and Applied Mathematics 45 (1992), 485–560.

[7] COHEN, M. F. Interactive spacetime control for animation. Computer Graphics 26, 2 (July 1992), 293–302.

[8] DAHMEN, W., AND KUNOTH, A. Multilevel preconditioning. Numerische Mathematik 63 (1992), 315–344.

[9] FINKELSTEIN, A., AND SALESIN, D. Multiresolution curves. In Computer Graphics, Annual Conference Series, 1994 (1994),
Siggraph, pp. 261–268.

[10] FLETCHER, R. Practical Methods of Optimization, vol. 1. John Wiley and Sons, 1980.

[11] FORSEY, D., AND BARTELS, R. Hierarchical b-spline refinement. Computer Graphics 22, 4 (August 1988), 205–212.

[12] FORSEY, D., AND WENG, L. Multi-resolution surface approximation for animation. In Graphics Interface (1993).

[13] FOWLER, B. Geometric manipulation of tensor product surfaces. In Proceedings, Symposium on Interactive 3D Graphics
(1992), pp. 101–108.

[14] GORTLER, S., AND COHEN, M. F. Hierarchical and variational geometric modeling with wavelets. 1995 Symposium on
Interactive 3D Graphics”, year =.

[15] GORTLER, S., SCHRÖDER, P., COHEN, M., AND HANRAHAN, P. Wavelet radiosity. In Computer Graphics, Annual Conference
Series, 1993 (1993), Siggraph, pp. 221–230.

[16] GORTLER, S. J. Wavelet Methods for Computer Graphics. PhD thesis, Princeton University, January 1995.

[17] HALSTEAD, M., KASS, M., AND DEROSE, T. Efficient, fair interpolation using catmull-clark surfaces. In Computer Graphics,
Annual Conference Series, 1993 (1993), Siggraph, pp. 35–43.
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